1、Java內存回收機制
不論哪一種語言的內存分配方式,都須要返回所分配內存的真實地址,也就是返回一個指針到內存塊的首地址。Java中對象是採用new或者反射的方法建立的, 這些對象的建立都是在堆(Heap)中分配的,全部對象的回收都是由Java虛擬機經過垃圾回收機制完成的。GC爲了可以正確釋放對象,會監控每一個對象的 運行情況,對他們的申請、引用、被引用、賦值等情況進行監控,Java會使用有向圖的方法進行管理內存,實時監控對象是否能夠達到,若是不可到達,則就將 其回收,這樣也能夠消除引用循環的問題。在Java語言中,判斷一個內存空間是否符合垃圾收集標準有兩個:一個是給對象賦予了空值null,如下再沒有調 用過,另外一個是給對象賦予了新值,這樣從新分配了內存空間。java
2、Java內存泄露引發緣由
首先,什麼是內存泄露?常常聽人談起內存泄露,但要問什麼是內存泄露,沒幾個說得清楚。內存泄露是指無用對象(再也不使用的對象)持續佔有內存或無用對象的 內存得不到及時釋放,從而形成的內存空間的浪費稱爲內存泄露。內存泄露有時不嚴重且不易察覺,這樣開發者就不知道存在內存泄露,但有時也會很嚴重,會提示 你Out of memory。
那麼,Java內存泄露根本緣由是什麼呢?長生命週期的對象持有短生命週期對象的引用就極可能發生內存泄露,儘管短生命週期對象已經再也不須要,可是由於長生命週期對象持有它的引用而致使不能被回收,這就是java中內存泄露的發生場景。具體主要有以下幾大類:
一、靜態集合類引發內存泄露:
像HashMap、Vector等的使用最容易出現內存泄露,這些靜態變量的生命週期和應用程序一致,他們所引用的全部的對象Object也不能被釋放,由於他們也將一直被Vector等引用着。
例:
Static Vector v = new Vector(10);
for (int i = 1; i<100; i++)
{
Object o = new Object();
v.add(o);
o = null;
}//
在這個例子中,循環申請Object 對象,並將所申請的對象放入一個Vector 中,若是僅僅釋放引用自己(o=null),那麼Vector 仍然引用該對象,因此這個對象對GC 來講是不可回收的。所以,若是對象加入到Vector 後,還必須從Vector 中刪除,最簡單的方法就是將Vector對象設置爲null。程序員
(1)若是要釋放對象,就必須使其的引用記數爲0,只有那些再也不被引用的對象才能被釋放,這個原理很簡單,可是很重要,是致使內存泄漏的基本緣由,也是解決內存泄漏方法的宗旨;
(2)程序員無須管理對象空間具體的分配和釋放過程,但必需要關注被釋放對象的引用記數是否爲0;
(3)一個對象可能被其餘對象引用的過程的幾種:數據庫
a.直接賦值,如上例中的A.a = E;
b.經過參數傳遞,例如public void addObject(Object E);
c.其它一些狀況如系統調用等。編程
二、當集合裏面的對象屬性被修改後,再調用remove()方法時不起做用。網絡
例:
public static void main(String[] args)
{
Set<Person> set = new HashSet<Person>();
Person p1 = new Person("唐僧","pwd1",25);
Person p2 = new Person("孫悟空","pwd2",26);
Person p3 = new Person("豬八戒","pwd3",27);
set.add(p1);
set.add(p2);
set.add(p3);
System.out.println("總共有:"+set.size()+" 個元素!"); //結果:總共有:3 個元素!
p3.setAge(2); //修改p3的年齡,此時p3元素對應的hashcode值發生改變 jvm
set.remove(p3); //此時remove不掉,形成內存泄漏socket
set.add(p3); //從新添加,竟然添加成功
System.out.println("總共有:"+set.size()+" 個元素!"); //結果:總共有:4 個元素!
for (Person person : set)
{
System.out.println(person);
}
}this
三、監聽器
在java 編程中,咱們都須要和監聽器打交道,一般一個應用當中會用到不少監聽器,咱們會調用一個控件的諸如addXXXListener()等方法來增長監聽器,但每每在釋放對象的時候卻沒有記住去刪除這些監聽器,從而增長了內存泄漏的機會。指針
四、各類鏈接
好比數據庫鏈接(dataSourse.getConnection()),網絡鏈接(socket)和io鏈接,除非其顯式的調用了其close()方 法將其鏈接關閉,不然是不會自動被GC 回收的。對於Resultset 和Statement 對象能夠不進行顯式回收,但Connection 必定要顯式回收,由於Connection 在任什麼時候候都沒法自動回收,而Connection一旦回收,Resultset 和Statement 對象就會當即爲NULL。可是若是使用鏈接池,狀況就不同了,除了要顯式地關閉鏈接,還必須顯式地關閉Resultset Statement 對象(關閉其中一個,另一個也會關閉),不然就會形成大量的Statement 對象沒法釋放,從而引發內存泄漏。這種狀況下通常都會在try裏面去的鏈接,在finally裏面釋放鏈接。code
五、內部類和外部模塊等的引用
內部類的引用是比較容易遺忘的一種,並且一旦沒釋放可能致使一系列的後繼類對象沒有釋放。此外程序員還要當心外部模塊不經意的引用,例如程序員A 負責A 模塊,調用了B 模塊的一個方法如:
public void registerMsg(Object b);
這種調用就要很是當心了,傳入了一個對象,極可能模塊B就保持了對該對象的引用,這時候就須要注意模塊B 是否提供相應的操做去除引用。
六、單例模式 不正確使用單例模式是引發內存泄露的一個常見問題,單例對象在被初始化後將在JVM的整個生命週期中存在(以靜態變量的方式),若是單例對象持有外部對象的引用,那麼這個外部對象將不能被jvm正常回收,致使內存泄露,考慮下面的例子: class A{ public A(){ B.getInstance().setA(this); } .... } //B類採用單例模式 class B{ private A a; private static B instance=new B(); public B(){} public static B getInstance(){ return instance; } public void setA(A a){ this.a=a; } //getter... } 顯然B採用singleton模式,它持有一個A對象的引用,而這個A類的對象將不能被回收。想象下若是A是個比較複雜的對象或者集合類型會發生什麼狀況