本例展現怎樣在一個管道中使用FunctionTransformer.若是你知道你的數據集的第一主成分與分類任務無關,你可使用FunctionTransformer選取除PCA轉化的數據的第一列以外的所有數據.python
# coding:utf-8 from pylab import * import numpy as np from sklearn.model_selection import train_test_split from sklearn.decomposition import PCA from sklearn.pipeline import make_pipeline from sklearn.preprocessing import FunctionTransformer myfont = matplotlib.font_manager.FontProperties(fname="Microsoft-Yahei-UI-Light.ttc") mpl.rcParams['axes.unicode_minus'] = False def _generate_vector(shift=0.5, noise=15): return np.arange(1000) + (np.random.rand(1000) - shift) * noise def generate_dataset(): """ 本數據集是兩條斜率爲1的直線,一個截距爲0,一個截距爲100 """ return np.vstack(( np.vstack(( _generate_vector(), _generate_vector() + 100, )).T, np.vstack(( _generate_vector(), _generate_vector(), )).T, )), np.hstack((np.zeros(1000), np.ones(1000))) def all_but_first_column(X): return X[:, 1:] def drop_first_component(X, y): """ 建立一個具備PCA(主成分分析)和列選擇器的管道, 並使用它轉換數據集 """ pipeline = make_pipeline( PCA(), FunctionTransformer(all_but_first_column), ) X_train, X_test, y_train, y_test = train_test_split(X, y) pipeline.fit(X_train, y_train) return pipeline.transform(X_test), y_test if __name__ == '__main__': X, y = generate_dataset() lw = 0 plt.figure() plt.scatter(X[:, 0], X[:, 1], c=y, lw=lw) plt.title(u"FunctionTransformer選擇數據列",fontproperties=myfont) plt.figure() X_transformed, y_transformed = drop_first_component(*generate_dataset()) plt.scatter( X_transformed[:, 0], np.zeros(len(X_transformed)), c=y_transformed, lw=lw, s=60 ) plt.title(u"FunctionTransformer選擇數據列",fontproperties=myfont) plt.show()