Java基礎回顧之ThreadLocal源碼分析

節選jdk源碼中比較重要的方法進行分析,以下:java

public class ThreadLocal<T> {
    
    private final int threadLocalHashCode = nextHashCode();
    private static AtomicInteger nextHashCode =
        new AtomicInteger();
    private static final int HASH_INCREMENT = 0x61c88647;
    private static int nextHashCode() {
        return nextHashCode.getAndAdd(HASH_INCREMENT);
    }

    public T get() {
        Thread t = Thread.currentThread();
        ThreadLocalMap map = getMap(t);
        if (map != null) {
            ThreadLocalMap.Entry e = map.getEntry(this);
            if (e != null) {
                @SuppressWarnings("unchecked")
                T result = (T)e.value;
                return result;
            }
        }
        return setInitialValue();
    }

    public void set(T value) {
        Thread t = Thread.currentThread();
        ThreadLocalMap map = getMap(t);
        if (map != null)
            map.set(this, value);
        else
            createMap(t, value);
    }

     public void remove() {
         ThreadLocalMap m = getMap(Thread.currentThread());
         if (m != null)
             m.remove(this);
     }
    ThreadLocalMap getMap(Thread t) {
        return t.threadLocals;
    }

    static class ThreadLocalMap {
        static class Entry extends WeakReference<ThreadLocal<?>> {
            /** The value associated with this ThreadLocal. */
            Object value;
            Entry(ThreadLocal<?> k, Object v) {
                super(k);
                value = v;
            }
        }

        private static final int INITIAL_CAPACITY = 16;
        /**
         * The table, resized as necessary.
         * table.length MUST always be a power of two.
         */
        private Entry[] table;

        /**
         * The number of entries in the table.
         */
        private int size = 0;

        private int threshold; // Default to 0

        /**
         * Set the resize threshold to maintain at worst a 2/3 load factor.
         */
        private void setThreshold(int len) {
            threshold = len * 2 / 3;
        }

        private static int nextIndex(int i, int len) {
            return ((i + 1 < len) ? i + 1 : 0);
        }
        ThreadLocalMap(ThreadLocal<?> firstKey, Object firstValue) {
            table = new Entry[INITIAL_CAPACITY];
            int i = firstKey.threadLocalHashCode & (INITIAL_CAPACITY - 1);
            table[i] = new Entry(firstKey, firstValue);
            size = 1;
            setThreshold(INITIAL_CAPACITY);
        }

        private Entry getEntry(ThreadLocal<?> key) {
            int i = key.threadLocalHashCode & (table.length - 1);
            Entry e = table[i];
            if (e != null && e.get() == key)
                return e;
            else
                return getEntryAfterMiss(key, i, e);
        }
        private Entry getEntryAfterMiss(ThreadLocal<?> key, int i, Entry e) {
            Entry[] tab = table;
            int len = tab.length;

            while (e != null) {
                ThreadLocal<?> k = e.get();
                if (k == key)
                    return e;
                if (k == null)
                    expungeStaleEntry(i);
                else
                    i = nextIndex(i, len);
                e = tab[i];
            }
            return null;
        }

        private void set(ThreadLocal<?> key, Object value) {
            Entry[] tab = table;
            int len = tab.length;
            int i = key.threadLocalHashCode & (len-1);

            for (Entry e = tab[i];
                 e != null;
                 e = tab[i = nextIndex(i, len)]) {
                ThreadLocal<?> k = e.get();

                if (k == key) {
                    e.value = value;
                    return;
                }

                if (k == null) {
                    replaceStaleEntry(key, value, i);
                    return;
                }
            }

            tab[i] = new Entry(key, value);
            int sz = ++size;
            if (!cleanSomeSlots(i, sz) && sz >= threshold)
                rehash();
        }

        private void remove(ThreadLocal<?> key) {
            Entry[] tab = table;
            int len = tab.length;
            int i = key.threadLocalHashCode & (len-1);
            for (Entry e = tab[i];
                 e != null;
                 e = tab[i = nextIndex(i, len)]) {
                if (e.get() == key) {
                    e.clear();
                    expungeStaleEntry(i);
                    return;
                }
            }
        }
    }
}

能夠看到,數據結構就是每一個線程都有一個ThreadLocalMap類型的threadLocals變量來維護線程內的全部ThreadLocal實例。ThreadLocalMap並不繼承Map,底層數據結構是一個數組ThreadLocalMap.Entry[] table數組(默認大小16),以及ThreadLocalMap.Entry(注意,它並不像HashMap那樣,它並非個鏈表元素,沒有next引用),Entry的key是ThreadLocal對象,Entry在table中的位置由threadLocalHashCode決定,它在每次ThreadLocal初始化時被賦予值,每次都會增長 0x61c88647,注意:nextHashCode是一個靜態變量. 數組

<!--more-->數據結構

ThreadLocal設置與獲取值:
在設置值的時候,會現根據Thread.currentThread()即當前線程獲取其ThreadLocalMap變量,再調用ThreadLocalMap.set方法,傳入的key爲ThreadLocal對象自己。那麼存在哪裏呢?它會根據int i = key.threadLocalHashCode & (len-1);來計算出索引,其中len爲table數組的長度,接下來就對table[i]上的Entry進行判斷,若是Entry的key=咱們傳入的key,那麼就更新它。若是Entry的key爲null(因爲Entry的key是WeakReference<ThreadLocal<?>,因此其key的生命週期與GC相關,下次GC時會被回收,從而致使null的出現),那麼就覆蓋它。不然i+1,尋找下個位置,若是找到了仍然按上述邏輯來,若是沒找到,那麼就會在數組尾部新建Entry並判斷是否須要擴容table數組(擴容因子2/3),若是須要擴容,那麼同時須要rehash操做。
在獲取值的時候,會現根據Thread.currentThread()即當前線程獲取其ThreadLocalMap變量,再調用ThreadLocalMap.getEntry方法,傳入的key爲ThreadLocal對象自己。其中會進行key.threadLocalHashCode & (table.length - 1);計算獲取索引值i,若是table[i]==key,那麼返回,不然就會調用getEntryAfterMiss,其內部邏輯就是,循環一直對i+1並獲取索引處的Entry,若是Entry.key相等返回,若是Entry,key爲null,清除對應的值(爲防止內存泄漏的一個舉措).this

還有個remove方法:
其會清除Entry的key及對應的value線程

ThreadLocal如何保證隔離各個線程呢?
前面說了,ThreadLocal的set/get底層都是經過ThreadLocalMap來進行的,而每一個線程都有本身的ThreadLocalMap變量,經過Thread.currentThread().threadLocals來獲取。因此這樣就確保了每一個線程的ThreadLocal對其餘線程不可見。那麼我在一個線程初始化的時候拿到了另外一個線程的引用,好比在main thread new 一個 thread,那麼main thread就獲取了那個thread的引用t,此時,我經過t.threadLocals來獲取這個ThreadLocalMap並操做其中的ThreadLocal行不行?親愛的,這是不行的。因threadLocals是默認的訪問修飾,也就是說只有當前包(java.lang)狀況下可訪問.code

那爲何ThreadLocal變量會致使內存泄漏呢?
首先來回顧下Entry的代碼對象

static class Entry extends WeakReference<ThreadLocal<?>> {
            /** The value associated with this ThreadLocal. */
            Object value;
            Entry(ThreadLocal<?> k, Object v) {
                super(k);
                value = v;
            }
        }

Entry是實現了弱引用的。那麼來講說Java中有四種引用類型之弱引用
WeakReference標誌性的特色是:reference實例不會影響到被應用對象的GC回收行爲,只要對象被除WeakReference對象以外全部的對象解除引用後,該對象即可以被GC回收,只不過在被對象回收以後,reference實例想得到被應用的對象時程序會返回null繼承

但要注意的是,此處的弱引用針對的是key,而value仍然是強引用。
從前面的代碼咱們看到,set方法在碰到Entry.key==null是時會調用replaceStaleEntry,而replaceStaleEntry內部又會調用expungeStaleEntry, get方法則在碰到Entry.key==null時直接調用expungeStaleEntry。那麼咱們來看看這個expungeStaleEntry代碼:索引

private int expungeStaleEntry(int staleSlot) {
            Entry[] tab = table;
            int len = tab.length;

            // expunge entry at staleSlot
            tab[staleSlot].value = null;
            tab[staleSlot] = null;
            size--;

            // Rehash until we encounter null
            Entry e;
            int i;
            for (i = nextIndex(staleSlot, len);
                 (e = tab[i]) != null;
                 i = nextIndex(i, len)) {
                ThreadLocal<?> k = e.get();
                if (k == null) {
                    e.value = null;
                    tab[i] = null;
                    size--;
                } else {
                    int h = k.threadLocalHashCode & (len - 1);
                    if (h != i) {
                        tab[i] = null;

                        // Unlike Knuth 6.4 Algorithm R, we must scan until
                        // null because multiple entries could have been stale.
                        while (tab[h] != null)
                            h = nextIndex(h, len);
                        tab[h] = e;
                    }
                }
            }
            return i;
        }

能夠看到它除了釋放索引i處Entry的key,value引用以外,還會遍歷i後面的索引,只要碰到Entry.key爲null的都會進行釋放。同時會對已有不在hash定位處的Entry進行移動位置,以下降後續哈希碰撞的概率。生命週期

一言以蔽之,就是ThreadLocal自己爲防止內存泄漏做出了必定的努力,首先Entry.key爲弱引用,在ThreadLocal沒有被其餘比弱引用強的引用如強引用,軟引用引用時,下次GC時,Entry.key即ThreadLocal弱引用會被回收,可是Entry.value是強引用,須要在當前線程的任意一個get,set調用而且碰到Entry.key==null的情形下會清除對於的Entry並釋放value引用。
那麼問題來了,當咱們使用線程池的時候,萬一這該死的線程一直處理存活狀態(不斷運行不一樣的Runnable,每一個Runnable又new一個或多個ThreadLocal),並且get,set大部分時候都沒碰到Entry.key==null的情形(threadLocalHashCode & (len-1)說怪我咯),那麼就會致使內存泄漏。其實出現這樣的概率有點低,對吧?可是畢竟是存在這樣的可能性嘛,那麼如何防範呢?其實只要咱們養成一個好習慣就能夠了,那就是每次使用完ThreadLocal後,調用其remove方法便可防止內存泄漏。

本文同步發佈在自有博客-博文地址

相關文章
相關標籤/搜索