Merge k Sorted Lists

/*Merge k sorted linked lists and return it as one sorted list.
 Analyze and describe its complexity. */
#include <iostream>
#include<algorithm>
#include<stdio.h>
#include<queue>
#include<vector>
using namespace std;

struct ListNode
{
    int val;
    ListNode *next;
    ListNode(int x) : val(x), next(NULL) {}
};
//struct cmp:public binary_function<ListNode*,ListNode*,bool>
class cmp//class is more simple than struct
{
public:
    bool operator()(ListNode* la,ListNode* lb)
    {
        if(!la||!lb)
            return !la;
        return la->val>lb->val;
    }
};
class Solution2
{
    ListNode* mergeKLists(vector<ListNode*>& lists)
    {
        //Time LimitExceeded
        if(lists.empty())
            return NULL;
        ListNode*head=NULL,*pos=NULL;
        do
        {
            make_heap(lists.begin(),lists.end(),cmp());
            pop_heap(lists.begin(),lists.end(),cmp());
            ListNode* last=lists.back();
            if(head==NULL)
            {
                head=last;
                pos=last;
            }
            else
            {
                pos->next=last;
                pos=last;
            }
            if(last==NULL)
                break;
            lists.pop_back();
            lists.push_back(last->next);
        }
        while(1);
        return head;
    }
};
class Solution1
{
public:
    ListNode* mergeKLists(vector<ListNode*>& lists)
    {
        for(vector<ListNode*>::iterator it=lists.begin(); it!=lists.end();)
            if(*it==NULL)
                it=lists.erase(it);
            else
                it++;
        if(lists.empty())
            return NULL;
        ListNode*head=NULL,*pos=NULL,*last=NULL;
        make_heap(lists.begin(),lists.end(),cmp());
        do
        {
            pop_heap(lists.begin(),lists.end(),cmp());
            last=lists.back();
            if(head==NULL)
            {
                head=last;
                pos=last;
            }
            else
            {
                pos->next=last;
                pos=last;
            }
            lists.erase(lists.end()-1);
            if(last->next)
            {
                lists.push_back(last->next);
                push_heap(lists.begin(),lists.end(),cmp());
            }
        }
        while(lists.size());
        if(pos!=NULL)
            pos->next=NULL;
        return head;
    }
};
class Solution
{
public:
    ListNode* mergeKLists(vector<ListNode*>& lists)
    {
        vector<int>::size_type i;
        priority_queue<ListNode*,vector<ListNode*>,cmp>Q;
        for(i=0; i<lists.size(); i++)
        {
            if(lists[i]!=NULL)
                Q.push(lists[i]);
        }
        ListNode*head=NULL,*pos=NULL,*pre=NULL;
        while(!Q.empty())
        {
            pre=Q.top();
            Q.pop();
            if(head==NULL)
            {
                head=pre;
                pos=pre;
            }
            else
            {
                pos->next=pre;
                pos=pre;
            }
            if(pre->next)
                Q.push(pre->next);
        }
        return head;
    }
};
int main()
{
    ListNode* ls[8];
    for(int i=0; i<5; i++)
        ls[i] =new ListNode(4-i);
    ls[5]=new ListNode(3);
    ls[5]->next=NULL;
    ls[6]=NULL;
    ls[7]=NULL;
    vector<ListNode*> lists(ls,ls+8);
    //Solution s;
    Solution1 s;
    ListNode*head=s.mergeKLists(lists);
    while(head)
    {
        cout<<head->val<<endl;
        head=head->next;
    }
    return 0;
}

首先用常規的合併方法確定是會超時的。咱們如今使用堆排序來作。ios

Solution2和Solution1最大的區別就是make_heap放在了循環裏面,這也是我參考網上其餘網友的答案。可是Solution2超時,而Solution1能AC。其實道理很簡單,咱們知道k個元素建堆的時間複雜度是O(k),而調整堆(pop_head和push_head)的複雜度是O(lgk)。如果把make_heap放在循環裏面,那麼每次都會從新建堆。而其實咱們只是對換了堆頂元素和最後一個元素,因此僅僅須要調整堆就能夠。綜述,Solution2由於一個簡單的操做把總的時間複雜度變爲了O(nk),而Solution1的時間複雜度僅僅是O(nlgk)。spa

Solution其實就是運用了priority_queue,而優先隊列原本就是使用了堆的相關操做,因此和Solution1的本質相同。code

相關文章
相關標籤/搜索