Python開發【第八篇】:網絡編程 Socket

Socket

socket一般也稱做"套接字",用於描述IP地址和端口,是一個通訊鏈的句柄,應用程序一般經過"套接字"向網絡發出請求或者應答網絡請求。html

socket起源於Unix,而Unix/Linux基本哲學之一就是「一切皆文件」,對於文件用【打開】【讀寫】【關閉】模式來操做。socket就是該模式的一個實現,socket便是一種特殊的文件,一些socket函數就是對其進行的操做(讀/寫IO、打開、關閉)python

socket和file的區別:react

  • file模塊是針對某個指定文件進行【打開】【讀寫】【關閉】
  • socket模塊是針對 服務器端 和 客戶端Socket 進行【打開】【讀寫】【關閉】

 

#!/usr/bin/env python # -*- coding:utf-8 -*- import socket ip_port = ('127.0.0.1',9999) sk = socket.socket() sk.bind(ip_port) sk.listen(5) while True: print 'server waiting...' conn,addr = sk.accept() client_data = conn.recv(1024) print client_data conn.sendall('不要回答,不要回答,不要回答') conn.close()
socket server
#!/usr/bin/env python # -*- coding:utf-8 -*- import socket ip_port = ('127.0.0.1',9999) sk = socket.socket() sk.connect(ip_port) sk.sendall('請求佔領地球') server_reply = sk.recv(1024) print server_reply sk.close()
socket client

WEB服務應用:程序員

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
#!/usr/bin/env python
#coding:utf-8
import socket
 
def handle_request(client):
     buf = client.recv( 1024 )
     client.send( "HTTP/1.1 200 OK\r\n\r\n" )
     client.send( "Hello, World" )
 
def main():
     sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
     sock.bind(( 'localhost' , 8080 ))
     sock.listen( 5 )
 
     while True :
         connection, address = sock.accept()
         handle_request(connection)
         connection.close()
 
if __name__ = = '__main__' :
   main()

更多功能web

sk = socket.socket(socket.AF_INET,socket.SOCK_STREAM,0)數據庫

參數一:地址簇編程

  socket.AF_INET IPv4(默認)   socket.AF_INET6 IPv6windows

  socket.AF_UNIX 只可以用於單一的Unix系統進程間通訊api

參數二:類型數組

  socket.SOCK_STREAM  流式socket , for TCP (默認)   socket.SOCK_DGRAM   數據報式socket , for UDP

  socket.SOCK_RAW 原始套接字,普通的套接字沒法處理ICMP、IGMP等網絡報文,而SOCK_RAW能夠;其次,SOCK_RAW也能夠處理特殊的IPv4報文;此外,利用原始套接字,能夠經過IP_HDRINCL套接字選項由用戶構造IP頭。   socket.SOCK_RDM 是一種可靠的UDP形式,即保證交付數據報但不保證順序。SOCK_RAM用來提供對原始協議的低級訪問,在須要執行某些特殊操做時使用,如發送ICMP報文。SOCK_RAM一般僅限於高級用戶或管理員運行的程序使用。   socket.SOCK_SEQPACKET 可靠的連續數據包服務

參數三:協議

  0  (默認)與特定的地址家族相關的協議,若是是 0 ,則系統就會根據地址格式和套接類別,自動選擇一個合適的協議

import socket ip_port = ('127.0.0.1',9999) sk = socket.socket(socket.AF_INET,socket.SOCK_DGRAM,0) sk.bind(ip_port) while True: data = sk.recv(1024) print data import socket ip_port = ('127.0.0.1',9999) sk = socket.socket(socket.AF_INET,socket.SOCK_DGRAM,0) while True: inp = raw_input('數據:').strip() if inp == 'exit': break sk.sendto(inp,ip_port) sk.close()
UDP Demo

sk.bind(address)

  s.bind(address) 將套接字綁定到地址。address地址的格式取決於地址族。在AF_INET下,以元組(host,port)的形式表示地址。

sk.listen(backlog)

  開始監聽傳入鏈接。backlog指定在拒絕鏈接以前,能夠掛起的最大鏈接數量。

      backlog等於5,表示內核已經接到了鏈接請求,但服務器尚未調用accept進行處理的鏈接個數最大爲5       這個值不能無限大,由於要在內核中維護鏈接隊列

sk.setblocking(bool)

  是否阻塞(默認True),若是設置False,那麼accept和recv時一旦無數據,則報錯。

sk.accept()

  接受鏈接並返回(conn,address),其中conn是新的套接字對象,能夠用來接收和發送數據。address是鏈接客戶端的地址。

  接收TCP 客戶的鏈接(阻塞式)等待鏈接的到來

sk.connect(address)

  鏈接到address處的套接字。通常,address的格式爲元組(hostname,port),若是鏈接出錯,返回socket.error錯誤。

sk.connect_ex(address)

  同上,只不過會有返回值,鏈接成功時返回 0 ,鏈接失敗時候返回編碼,例如:10061

sk.close()

  關閉套接字

sk.recv(bufsize[,flag])

  接受套接字的數據。數據以字符串形式返回,bufsize指定最多能夠接收的數量。flag提供有關消息的其餘信息,一般能夠忽略。

sk.recvfrom(bufsize[.flag])

  與recv()相似,但返回值是(data,address)。其中data是包含接收數據的字符串,address是發送數據的套接字地址。

sk.send(string[,flag])

  將string中的數據發送到鏈接的套接字。返回值是要發送的字節數量,該數量可能小於string的字節大小。即:可能未將指定內容所有發送。

sk.sendall(string[,flag])

  將string中的數據發送到鏈接的套接字,但在返回以前會嘗試發送全部數據。成功返回None,失敗則拋出異常。

      內部經過遞歸調用send,將全部內容發送出去。

sk.sendto(string[,flag],address)

  將數據發送到套接字,address是形式爲(ipaddr,port)的元組,指定遠程地址。返回值是發送的字節數。該函數主要用於UDP協議。

sk.settimeout(timeout)

  設置套接字操做的超時期,timeout是一個浮點數,單位是秒。值爲None表示沒有超時期。通常,超時期應該在剛建立套接字時設置,由於它們可能用於鏈接的操做(如 client 鏈接最多等待5s )

sk.getpeername()

  返回鏈接套接字的遠程地址。返回值一般是元組(ipaddr,port)。

sk.getsockname()

  返回套接字本身的地址。一般是一個元組(ipaddr,port)

sk.fileno()

  套接字的文件描述符

# 服務端 import socket ip_port = ('127.0.0.1',9999) sk = socket.socket(socket.AF_INET,socket.SOCK_DGRAM,0) sk.bind(ip_port) while True: data,(host,port) = sk.recvfrom(1024) print(data,host,port) sk.sendto(bytes('ok', encoding='utf-8'), (host,port)) #客戶端 import socket ip_port = ('127.0.0.1',9999) sk = socket.socket(socket.AF_INET,socket.SOCK_DGRAM,0) while True: inp = input('數據:').strip() if inp == 'exit': break sk.sendto(bytes(inp, encoding='utf-8'),ip_port) data = sk.recvfrom(1024) print(data) sk.close()
UDP

實例:智能機器人

#!/usr/bin/env python # -*- coding:utf-8 -*- import socket ip_port = ('127.0.0.1',8888) sk = socket.socket() sk.bind(ip_port) sk.listen(5) while True: conn,address = sk.accept() conn.sendall('歡迎致電 10086,請輸入1xxx,0轉人工服務.') Flag = True while Flag: data = conn.recv(1024) if data == 'exit': Flag = False elif data == '0': conn.sendall('經過可能會被錄音.balabala一大推') else: conn.sendall('請從新輸入.') conn.close()
服務端
#!/usr/bin/env python # -*- coding:utf-8 -*- import socket ip_port = ('127.0.0.1',8005) sk = socket.socket() sk.connect(ip_port) sk.settimeout(5) while True: data = sk.recv(1024) print 'receive:',data inp = raw_input('please input:') sk.sendall(inp) if inp == 'exit': break sk.close()
客戶端

IO多路複用

I/O多路複用指:經過一種機制,能夠監視多個描述符,一旦某個描述符就緒(通常是讀就緒或者寫就緒),可以通知程序進行相應的讀寫操做。

Linux

Linux中的 select,poll,epoll 都是IO多路複用的機制。

Python

Python中有一個select模塊,其中提供了:select、poll、epoll三個方法,分別調用系統的 select,poll,epoll 從而實現IO多路複用。

?
1
2
3
4
5
6
Windows Python:
     提供: select
Mac Python:
     提供: select
Linux Python:
     提供: select、poll、epoll

注意:網絡操做、文件操做、終端操做等均屬於IO操做,對於windows只支持Socket操做,其餘系統支持其餘IO操做,可是沒法檢測 普通文件操做 自動上次讀取是否已經變化。

對於select方法:

?
1
2
3
4
5
6
7
8
9
10
11
句柄列表 11 , 句柄列表 22 , 句柄列表 33 = select.select(句柄序列 1 , 句柄序列 2 , 句柄序列 3 , 超時時間)
 
參數: 可接受四個參數(前三個必須)
返回值:三個列表
 
select方法用來監視文件句柄,若是句柄發生變化,則獲取該句柄。
1 、當 參數 1 序列中的句柄發生可讀時(accetp和read),則獲取發生變化的句柄並添加到 返回值 1 序列中
2 、當 參數 2 序列中含有句柄時,則將該序列中全部的句柄添加到 返回值 2 序列中
3 、當 參數 3 序列中的句柄發生錯誤時,則將該發生錯誤的句柄添加到 返回值 3 序列中
4 、當 超時時間 未設置,則select會一直阻塞,直到監聽的句柄發生變化
    當 超時時間 = 1 時,那麼若是監聽的句柄均無任何變化,則select會阻塞 1 秒,以後返回三個空列表,若是監聽的句柄有變化,則直接執行。
#!/usr/bin/env python # -*- coding:utf-8 -*- import select import threading import sys while True: readable, writeable, error = select.select([sys.stdin,],[],[],1) if sys.stdin in readable: print 'select get stdin',sys.stdin.readline()
利用select監聽終端操做實例
#!/usr/bin/env python # -*- coding:utf-8 -*- import socket import select sk1 = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sk1.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) sk1.bind(('127.0.0.1',8002)) sk1.listen(5) sk1.setblocking(0) inputs = [sk1,] while True: readable_list, writeable_list, error_list = select.select(inputs, [], inputs, 1) for r in readable_list: # 當客戶端第一次鏈接服務端時 if sk1 == r: print 'accept' request, address = r.accept() request.setblocking(0) inputs.append(request) # 當客戶端鏈接上服務端以後,再次發送數據時 else: received = r.recv(1024) # 當正常接收客戶端發送的數據時 if received: print 'received data:', received # 當客戶端關閉程序時 else: inputs.remove(r) sk1.close()
利用select實現僞同時處理多個Socket客戶端請求:服務端
#!/usr/bin/env python # -*- coding:utf-8 -*- import socket ip_port = ('127.0.0.1',8002) sk = socket.socket() sk.connect(ip_port) while True: inp = raw_input('please input:') sk.sendall(inp) sk.close()
利用select實現僞同時處理多個Socket客戶端請求:客戶端

此處的Socket服務端相比與原生的Socket,他支持當某一個請求再也不發送數據時,服務器端不會等待而是能夠去處理其餘請求的數據。可是,若是每一個請求的耗時比較長時,select版本的服務器端也沒法完成同時操做。

#!/usr/bin/env python #coding:utf8 ''' 服務器的實現 採用select的方式 ''' import select import socket import sys import Queue #建立套接字並設置該套接字爲非阻塞模式  server = socket.socket(socket.AF_INET,socket.SOCK_STREAM) server.setblocking(0) #綁定套接字 server_address = ('localhost',10000) print >>sys.stderr,'starting up on %s port %s'% server_address server.bind(server_address) #將該socket變成服務模式 #backlog等於5,表示內核已經接到了鏈接請求,但服務器尚未調用accept進行處理的鏈接個數最大爲5 #這個值不能無限大,由於要在內核中維護鏈接隊列  server.listen(5) #初始化讀取數據的監聽列表,最開始時但願從server這個套接字上讀取數據 inputs = [server] #初始化寫入數據的監聽列表,最開始並無客戶端鏈接進來,因此列表爲空  outputs = [] #要發往客戶端的數據 message_queues = {} while inputs: print >>sys.stderr,'waiting for the next event' #調用select監聽全部監聽列表中的套接字,並將準備好的套接字加入到對應的列表中 readable,writable,exceptional = select.select(inputs,outputs,inputs)#列表中的socket 套接字 若是是文件呢? #監控文件句柄有某一處發生了變化 可寫 可讀 異常屬於Linux中的網絡編程 #屬於同步I/O操做,屬於I/O複用模型的一種 #rlist--等待到準備好讀 #wlist--等待到準備好寫 #xlist--等待到一種異常 #處理可讀取的套接字 ''' 若是server這個套接字可讀,則說明有新連接到來 此時在server套接字上調用accept,生成一個與客戶端通信的套接字 並將與客戶端通信的套接字加入inputs列表,下一次能夠經過select檢查鏈接是否可讀 而後在發往客戶端的緩衝中加入一項,鍵名爲:與客戶端通信的套接字,鍵值爲空隊列 select系統調用是用來讓咱們的程序監視多個文件句柄(file descrīptor)的狀態變化的。程序會停在select這裏等待, 直到被監視的文件句柄有某一個或多個發生了狀態改變 ''' ''' 若可讀的套接字不是server套接字,有兩種狀況:一種是有數據到來,另外一種是連接斷開 若是有數據到來,先接收數據,而後將收到的數據填入往客戶端的緩存區中的對應位置,最後 將於客戶端通信的套接字加入到寫數據的監聽列表: 若是套接字可讀.但沒有接收到數據,則說明客戶端已經斷開。這時須要關閉與客戶端鏈接的套接字 進行資源清理 ''' for s in readable: if s is server: connection,client_address = s.accept() print >>sys.stderr,'connection from',client_address connection.setblocking(0)#設置非阻塞  inputs.append(connection) message_queues[connection] = Queue.Queue() else: data = s.recv(1024) if data: print >>sys.stderr,'received "%s" from %s'% \ (data,s.getpeername()) message_queues[s].put(data) if s not in outputs: outputs.append(s) else: print >>sys.stderr,'closing',client_address if s in outputs: outputs.remove(s) inputs.remove(s) s.close() del message_queues[s] #處理可寫的套接字 ''' 在發送緩衝區中取出響應的數據,發往客戶端。 若是沒有數據須要寫,則將套接字從發送隊列中移除,select中再也不監視 ''' for s in writable: try: next_msg = message_queues[s].get_nowait() except Queue.Empty: print >>sys.stderr,' ',s,getpeername(),'queue empty' outputs.remove(s) else: print >>sys.stderr,'sending "%s" to %s'% \ (next_msg,s.getpeername()) s.send(next_msg) #處理異常狀況 for s in exceptional: for s in exceptional: print >>sys.stderr,'exception condition on',s.getpeername() inputs.remove(s) if s in outputs: outputs.remove(s) s.close() del message_queues[s]
基於select實現socket服務端

SocketServer模塊

SocketServer內部使用 IO多路複用 以及 「多線程」 和 「多進程」 ,從而實現併發處理多個客戶端請求的Socket服務端。即:每一個客戶端請求鏈接到服務器時,Socket服務端都會在服務器是建立一個「線程」或者「進程」 專門負責處理當前客戶端的全部請求。

ThreadingTCPServer

ThreadingTCPServer實現的Soket服務器內部會爲每一個client建立一個 「線程」,該線程用來和客戶端進行交互。

一、ThreadingTCPServer基礎

使用ThreadingTCPServer:

  • 建立一個繼承自 SocketServer.BaseRequestHandler 的類
  • 類中必須定義一個名稱爲 handle 的方法
  • 啓動ThreadingTCPServer
#!/usr/bin/env python # -*- coding:utf-8 -*- import SocketServer class MyServer(SocketServer.BaseRequestHandler): def handle(self): # print self.request,self.client_address,self.server conn = self.request conn.sendall('歡迎致電 10086,請輸入1xxx,0轉人工服務.') Flag = True while Flag: data = conn.recv(1024) if data == 'exit': Flag = False elif data == '0': conn.sendall('經過可能會被錄音.balabala一大推') else: conn.sendall('請從新輸入.') if __name__ == '__main__': server = SocketServer.ThreadingTCPServer(('127.0.0.1',8009),MyServer) server.serve_forever()
SocketServer實現服務器
#!/usr/bin/env python # -*- coding:utf-8 -*- import socket ip_port = ('127.0.0.1',8009) sk = socket.socket() sk.connect(ip_port) sk.settimeout(5) while True: data = sk.recv(1024) print 'receive:',data inp = raw_input('please input:') sk.sendall(inp) if inp == 'exit': break sk.close()
客戶端

二、ThreadingTCPServer源碼剖析

ThreadingTCPServer的類圖關係以下:

 

內部調用流程爲:

  • 啓動服務端程序
  • 執行 TCPServer.__init__ 方法,建立服務端Socket對象並綁定 IP 和 端口
  • 執行 BaseServer.__init__ 方法,將自定義的繼承自SocketServer.BaseRequestHandler 的類 MyRequestHandle賦值給 self.RequestHandlerClass
  • 執行 BaseServer.server_forever 方法,While 循環一直監聽是否有客戶端請求到達 ...
  • 當客戶端鏈接到達服務器
  • 執行 ThreadingMixIn.process_request 方法,建立一個 「線程」 用來處理請求
  • 執行 ThreadingMixIn.process_request_thread 方法
  • 執行 BaseServer.finish_request 方法,執行 self.RequestHandlerClass()  即:執行 自定義 MyRequestHandler 的構造方法(自動調用基類BaseRequestHandler的構造方法,在該構造方法中又會調用 MyRequestHandler的handle方法)

ThreadingTCPServer相關源碼:

class BaseServer: """Base class for server classes. Methods for the caller: - __init__(server_address, RequestHandlerClass) - serve_forever(poll_interval=0.5) - shutdown() - handle_request() # if you do not use serve_forever() - fileno() -> int # for select() Methods that may be overridden: - server_bind() - server_activate() - get_request() -> request, client_address - handle_timeout() - verify_request(request, client_address) - server_close() - process_request(request, client_address) - shutdown_request(request) - close_request(request) - handle_error() Methods for derived classes: - finish_request(request, client_address) Class variables that may be overridden by derived classes or instances: - timeout - address_family - socket_type - allow_reuse_address Instance variables: - RequestHandlerClass - socket """ timeout = None def __init__(self, server_address, RequestHandlerClass): """Constructor. May be extended, do not override.""" self.server_address = server_address self.RequestHandlerClass = RequestHandlerClass self.__is_shut_down = threading.Event() self.__shutdown_request = False def server_activate(self): """Called by constructor to activate the server. May be overridden. """ pass def serve_forever(self, poll_interval=0.5): """Handle one request at a time until shutdown. Polls for shutdown every poll_interval seconds. Ignores self.timeout. If you need to do periodic tasks, do them in another thread. """ self.__is_shut_down.clear() try: while not self.__shutdown_request: # XXX: Consider using another file descriptor or # connecting to the socket to wake this up instead of # polling. Polling reduces our responsiveness to a # shutdown request and wastes cpu at all other times. r, w, e = _eintr_retry(select.select, [self], [], [], poll_interval) if self in r: self._handle_request_noblock() finally: self.__shutdown_request = False self.__is_shut_down.set() def shutdown(self): """Stops the serve_forever loop. Blocks until the loop has finished. This must be called while serve_forever() is running in another thread, or it will deadlock. """ self.__shutdown_request = True self.__is_shut_down.wait() # The distinction between handling, getting, processing and # finishing a request is fairly arbitrary. Remember: # # - handle_request() is the top-level call. It calls # select, get_request(), verify_request() and process_request() # - get_request() is different for stream or datagram sockets # - process_request() is the place that may fork a new process # or create a new thread to finish the request # - finish_request() instantiates the request handler class; # this constructor will handle the request all by itself def handle_request(self): """Handle one request, possibly blocking. Respects self.timeout. """ # Support people who used socket.settimeout() to escape # handle_request before self.timeout was available. timeout = self.socket.gettimeout() if timeout is None: timeout = self.timeout elif self.timeout is not None: timeout = min(timeout, self.timeout) fd_sets = _eintr_retry(select.select, [self], [], [], timeout) if not fd_sets[0]: self.handle_timeout() return self._handle_request_noblock() def _handle_request_noblock(self): """Handle one request, without blocking. I assume that select.select has returned that the socket is readable before this function was called, so there should be no risk of blocking in get_request(). """ try: request, client_address = self.get_request() except socket.error: return if self.verify_request(request, client_address): try: self.process_request(request, client_address) except: self.handle_error(request, client_address) self.shutdown_request(request) def handle_timeout(self): """Called if no new request arrives within self.timeout. Overridden by ForkingMixIn. """ pass def verify_request(self, request, client_address): """Verify the request. May be overridden. Return True if we should proceed with this request. """ return True def process_request(self, request, client_address): """Call finish_request. Overridden by ForkingMixIn and ThreadingMixIn. """ self.finish_request(request, client_address) self.shutdown_request(request) def server_close(self): """Called to clean-up the server. May be overridden. """ pass def finish_request(self, request, client_address): """Finish one request by instantiating RequestHandlerClass.""" self.RequestHandlerClass(request, client_address, self) def shutdown_request(self, request): """Called to shutdown and close an individual request.""" self.close_request(request) def close_request(self, request): """Called to clean up an individual request.""" pass def handle_error(self, request, client_address): """Handle an error gracefully. May be overridden. The default is to print a traceback and continue. """ print '-'*40 print 'Exception happened during processing of request from', print client_address import traceback traceback.print_exc() # XXX But this goes to stderr! print '-'*40
BaseServer
class TCPServer(BaseServer): """Base class for various socket-based server classes. Defaults to synchronous IP stream (i.e., TCP). Methods for the caller: - __init__(server_address, RequestHandlerClass, bind_and_activate=True) - serve_forever(poll_interval=0.5) - shutdown() - handle_request() # if you don't use serve_forever() - fileno() -> int # for select() Methods that may be overridden: - server_bind() - server_activate() - get_request() -> request, client_address - handle_timeout() - verify_request(request, client_address) - process_request(request, client_address) - shutdown_request(request) - close_request(request) - handle_error() Methods for derived classes: - finish_request(request, client_address) Class variables that may be overridden by derived classes or instances: - timeout - address_family - socket_type - request_queue_size (only for stream sockets) - allow_reuse_address Instance variables: - server_address - RequestHandlerClass - socket """ address_family = socket.AF_INET socket_type = socket.SOCK_STREAM request_queue_size = 5 allow_reuse_address = False def __init__(self, server_address, RequestHandlerClass, bind_and_activate=True): """Constructor. May be extended, do not override.""" BaseServer.__init__(self, server_address, RequestHandlerClass) self.socket = socket.socket(self.address_family, self.socket_type) if bind_and_activate: try: self.server_bind() self.server_activate() except: self.server_close() raise def server_bind(self): """Called by constructor to bind the socket. May be overridden. """ if self.allow_reuse_address: self.socket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) self.socket.bind(self.server_address) self.server_address = self.socket.getsockname() def server_activate(self): """Called by constructor to activate the server. May be overridden. """ self.socket.listen(self.request_queue_size) def server_close(self): """Called to clean-up the server. May be overridden. """ self.socket.close() def fileno(self): """Return socket file number. Interface required by select(). """ return self.socket.fileno() def get_request(self): """Get the request and client address from the socket. May be overridden. """ return self.socket.accept() def shutdown_request(self, request): """Called to shutdown and close an individual request.""" try: #explicitly shutdown. socket.close() merely releases #the socket and waits for GC to perform the actual close.  request.shutdown(socket.SHUT_WR) except socket.error: pass #some platforms may raise ENOTCONN here  self.close_request(request) def close_request(self, request): """Called to clean up an individual request.""" request.close()
TCPServer
class ThreadingMixIn: """Mix-in class to handle each request in a new thread.""" # Decides how threads will act upon termination of the # main process daemon_threads = False def process_request_thread(self, request, client_address): """Same as in BaseServer but as a thread. In addition, exception handling is done here. """ try: self.finish_request(request, client_address) self.shutdown_request(request) except: self.handle_error(request, client_address) self.shutdown_request(request) def process_request(self, request, client_address): """Start a new thread to process the request.""" t = threading.Thread(target = self.process_request_thread, args = (request, client_address)) t.daemon = self.daemon_threads t.start()
ThreadingMixIn
class ThreadingTCPServer(ThreadingMixIn, TCPServer): pass
ThreadingTCPServer

RequestHandler相關源碼

class BaseRequestHandler: """Base class for request handler classes. This class is instantiated for each request to be handled. The constructor sets the instance variables request, client_address and server, and then calls the handle() method. To implement a specific service, all you need to do is to derive a class which defines a handle() method. The handle() method can find the request as self.request, the client address as self.client_address, and the server (in case it needs access to per-server information) as self.server. Since a separate instance is created for each request, the handle() method can define arbitrary other instance variariables. """ def __init__(self, request, client_address, server): self.request = request self.client_address = client_address self.server = server self.setup() try: self.handle() finally: self.finish() def setup(self): pass def handle(self): pass def finish(self): pass
SocketServer.BaseRequestHandler

實例:

#!/usr/bin/env python # -*- coding:utf-8 -*- import SocketServer class MyServer(SocketServer.BaseRequestHandler): def handle(self): # print self.request,self.client_address,self.server conn = self.request conn.sendall('歡迎致電 10086,請輸入1xxx,0轉人工服務.') Flag = True while Flag: data = conn.recv(1024) if data == 'exit': Flag = False elif data == '0': conn.sendall('經過可能會被錄音.balabala一大推') else: conn.sendall('請從新輸入.') if __name__ == '__main__': server = SocketServer.ThreadingTCPServer(('127.0.0.1',8009),MyServer) server.serve_forever()
服務端
#!/usr/bin/env python # -*- coding:utf-8 -*- import socket ip_port = ('127.0.0.1',8009) sk = socket.socket() sk.connect(ip_port) sk.settimeout(5) while True: data = sk.recv(1024) print 'receive:',data inp = raw_input('please input:') sk.sendall(inp) if inp == 'exit': break sk.close()
客戶端

源碼精簡:

複製代碼
import socket import threading import select def process(request, client_address): print request,client_address conn = request conn.sendall('歡迎致電 10086,請輸入1xxx,0轉人工服務.') flag = True while flag: data = conn.recv(1024) if data == 'exit': flag = False elif data == '0': conn.sendall('經過可能會被錄音.balabala一大推') else: conn.sendall('請從新輸入.') sk = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sk.bind(('127.0.0.1',8002)) sk.listen(5) while True: r, w, e = select.select([sk,],[],[],1) print 'looping' if sk in r: print 'get request' request, client_address = sk.accept() t = threading.Thread(target=process, args=(request, client_address)) t.daemon = False t.start() sk.close()
複製代碼

如精簡代碼能夠看出,SocketServer的ThreadingTCPServer之因此能夠同時處理請求得益於 selectThreading 兩個東西,其實本質上就是在服務器端爲每個客戶端建立一個線程,當前線程用來處理對應客戶端的請求,因此,能夠支持同時n個客戶端連接(長鏈接)。

ForkingTCPServer

ForkingTCPServer和ThreadingTCPServer的使用和執行流程基本一致,只不過在內部分別爲請求者創建 「線程」  和 「進程」。

基本使用:

#!/usr/bin/env python # -*- coding:utf-8 -*- import SocketServer class MyServer(SocketServer.BaseRequestHandler): def handle(self): # print self.request,self.client_address,self.server conn = self.request conn.sendall('歡迎致電 10086,請輸入1xxx,0轉人工服務.') Flag = True while Flag: data = conn.recv(1024) if data == 'exit': Flag = False elif data == '0': conn.sendall('經過可能會被錄音.balabala一大推') else: conn.sendall('請從新輸入.') if __name__ == '__main__': server = SocketServer.ForkingTCPServer(('127.0.0.1',8009),MyServer) server.serve_forever()
服務端
#!/usr/bin/env python # -*- coding:utf-8 -*- import socket ip_port = ('127.0.0.1',8009) sk = socket.socket() sk.connect(ip_port) sk.settimeout(5) while True: data = sk.recv(1024) print 'receive:',data inp = raw_input('please input:') sk.sendall(inp) if inp == 'exit': break sk.close()
客戶端

以上ForkingTCPServer只是將 ThreadingTCPServer 實例中的代碼:

?
1
2
3
server = SocketServer.ThreadingTCPServer(( '127.0.0.1' , 8009 ),MyRequestHandler)
變動爲:
server = SocketServer.ForkingTCPServer(( '127.0.0.1' , 8009 ),MyRequestHandler)

SocketServer的ThreadingTCPServer之因此能夠同時處理請求得益於 select 和 os.fork 兩個東西,其實本質上就是在服務器端爲每個客戶端建立一個進程,當前新建立的進程用來處理對應客戶端的請求,因此,能夠支持同時n個客戶端連接(長鏈接)。

源碼剖析參考 ThreadingTCPServer

Twisted

Twisted是一個事件驅動的網絡框架,其中包含了諸多功能,例如:網絡協議、線程、數據庫管理、網絡操做、電子郵件等。

事件驅動

簡而言之,事件驅動分爲二個部分:第一,註冊事件;第二,觸發事件。

自定義事件驅動框架,命名爲:「弒君者」:

#!/usr/bin/env python # -*- coding:utf-8 -*- # event_drive.py  event_list = [] def run(): for event in event_list: obj = event() obj.execute() class BaseHandler(object): """ 用戶必須繼承該類,從而規範全部類的方法(相似於接口的功能) """ def execute(self): raise Exception('you must overwrite execute')
最牛逼的事件驅動框架

程序員使用「弒君者框架」:

#!/usr/bin/env python # -*- coding:utf-8 -*- from source import event_drive class MyHandler(event_drive.BaseHandler): def execute(self): print 'event-drive execute MyHandler' event_drive.event_list.append(MyHandler) event_drive.run()
View Code

如上述代碼,事件驅動只不過是框架規定了執行順序,程序員在使用框架時,能夠向原執行順序中註冊「事件」,從而在框架執行時能夠出發已註冊的「事件」。

基於事件驅動Socket

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
#!/usr/bin/env python
# -*- coding:utf-8 -*-
 
from twisted.internet import protocol
from twisted.internet import reactor
 
class Echo(protocol.Protocol):
     def dataReceived( self , data):
         self .transport.write(data)
 
def main():
     factory = protocol.ServerFactory()
     factory.protocol = Echo
 
     reactor.listenTCP( 8000 ,factory)
     reactor.run()
 
if __name__ = = '__main__' :
     main()

程序執行流程:

  • 運行服務端程序
  • 建立Protocol的派生類Echo
  • 建立ServerFactory對象,並將Echo類封裝到其protocol字段中
  • 執行reactor的 listenTCP 方法,內部使用 tcp.Port 建立socket server對象,並將該對象添加到了 reactor的set類型的字段 _read 中
  • 執行reactor的 run 方法,內部執行 while 循環,並經過 select 來監視 _read 中文件描述符是否有變化,循環中...
  • 客戶端請求到達
  • 執行reactor的 _doReadOrWrite 方法,其內部經過反射調用 tcp.Port 類的 doRead 方法,內部 accept 客戶端鏈接並建立Server對象實例(用於封裝客戶端socket信息)和 建立 Echo 對象實例(用於處理請求) ,而後調用 Echo 對象實例的 makeConnection 方法,建立鏈接。
  • 執行 tcp.Server 類的 doRead 方法,讀取數據,
  • 執行 tcp.Server 類的 _dataReceived 方法,若是讀取數據內容爲空(關閉連接),不然,出發 Echo 的 dataReceived 方法
  • 執行 Echo 的 dataReceived 方法

從源碼能夠看出,上述實例本質上使用了事件驅動的方法 和 IO多路複用的機制來進行Socket的處理。

#!/usr/bin/env python # -*- coding:utf-8 -*- from twisted.internet import reactor, protocol from twisted.web.client import getPage from twisted.internet import reactor import time class Echo(protocol.Protocol): def dataReceived(self, data): deferred1 = getPage('http://cnblogs.com') deferred1.addCallback(self.printContents) deferred2 = getPage('http://baidu.com') deferred2.addCallback(self.printContents) for i in range(2): time.sleep(1) print 'execute ',i def execute(self,data): self.transport.write(data) def printContents(self,content): print len(content),content[0:100],time.time() def main(): factory = protocol.ServerFactory() factory.protocol = Echo reactor.listenTCP(8000,factory) reactor.run() if __name__ == '__main__': main()
異步IO操做

更多請見:

  https://twistedmatrix.com/trac   http://twistedmatrix.com/documents/current/api/

相關文章
相關標籤/搜索