【伍哥原創】html
使用python開發RabbitMQ應用
(參考了RabbitMQ網站上提供的英文版本入門指南: http://www.rabbitmq.com/getstarted.html)java
測試環境:CentOS 6.2python
1,測試環境準備git
安裝RabbitMQ server,python(通常系統都自帶了python)和pika 0.9.5。github
安裝RabbitMQ server能夠參考伍哥前面的文章。shell
安裝pika通常有兩種方式:
能夠經過pip或者easy_install來進行,不過pip是python的包管理器,須要單獨安裝,而CentOS已經準備好easy_install了(其實就是一個python腳本)。
官方文檔能夠參考這裏:http://pika.github.com/vim
1
2
3
4
5
6
7
8
9
10
11
|
$ easy_install pika
Reading https:
//tonyg
.github.com
/pika/
Reading http:
//pika
.github.com/
Best match: pika 0.9.5
Downloading http:
//pypi
.python.org
/packages/source/p/pika/pika-0
.9.5.
tar
.gz
Processing pika-0.9.5.
tar
.gz
Running pika-0.9.5
/setup
.py -q bdist_egg --dist-
dir
/tmp/easy_install-1C9Vbo/pika-0
.9.5
/egg-dist-tmp-k1W5aK
Adding pika 0.9.5 to easy-
install
.pth
file
Installed
/usr/lib/python2
.6
/site-packages/pika-0
.9.5-py2.6.egg
Processing dependencies
for
pika
Finished processing dependencies
for
pika
|
你應該會看到: pika被安裝在/usr/lib/python2.6/site-packages/pika-0.9.5-py2.6.egg (蟒蛇蛋!嘿嘿)bash
而後把rabbitmq server啓動一下和準備好測試目錄rabbitmq_app:app
1
2
3
4
5
6
|
$
/usr/local/rabbitmq/sbin/rabbitmq-server
-detached
$
cd
~
$
mkdir
-p
test
/rabbitmq_app
$
cd
test
/rabbitmq_app
$
mkdir
tut1 tut2 tut3 tut4 tut5 tut6
|
2,實例一:來個hello world程序
負載均衡
1
2
3
|
$
cd
tut1
$ vim send.py (代碼以下)
$ vim receive.py (代碼以下)
|
首先是消息發送程序: send.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
|
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import
sys
import
pika
connection
=
pika.BlockingConnection(pika.ConnectionParameters(
'localhost'
))
channel
=
connection.channel()
channel.queue_declare(queue
=
'hello'
)
if
len
(sys.argv) <
2
:
print
'message is empty!'
sys.exit(
0
)
message
=
sys.argv[
1
]
channel.basic_publish(exchange
=
'
', routing_key='
hello', body
=
message)
print
" [x] sent: '"
+
message
+
"' \n"
connection.close()
|
跑一下send.py發送一個消息
1
2
3
4
5
6
|
$ python send.py
'Hello World!'
$ python send.py
'你好伍哥'
$
/usr/local/rabbitmq/sbin/rabbitmqctl
list_queues
Listing queues ...
hello 2
...
done
.
|
若是你也看到hello隊列裏面有一個消息的話,就證實能夠發消息了。
而後寫一個接收消息腳本:receive.py
1
2
3
4
5
6
7
8
9
10
11
12
13
|
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import
pika
connection
=
pika.BlockingConnection(pika.ConnectionParameters(
'localhost'
))
channel
=
connection.channel()
channel.queue_declare(queue
=
'hello'
)
print
'[*] Waiting for messages. To exit press CTRL+C'
def
callback(ch, method, properties, body):
print
body
channel.basic_consume(callback, queue
=
'hello'
, no_ack
=
True
)
channel.start_consuming()
|
其中第12行的 no_ack=True 表示消費完了這個消息之後不主動把完成狀態通知rabbitmq。
而後開另一個shell,執行一下receive.py
1
2
3
4
|
$ python receive.py
[*] Waiting
for
messages. To
exit
press CTRL+C
Hello World!
你好伍哥
|
3,實例二:工做隊列(work queue / task queue)
通常應用於把比較耗時的任務從主線任務分離出來。好比一個http頁面請求,裏面須要發送帶大附件的郵件、或者是要處理一張頭像圖片等。這類型工做隊列的 處理端通常有多個worker進程,分擔隊列裏面的任務。這就有點負載均衡的策略在裏面了。儘可能作到每一個進程的工做量比較平均,並且是完成了一個任務才接 第二個任務。看看咱們的實現吧。
1
2
3
|
$
cd
tut2
$ vim manager.py (代碼以下)
$ vim worker.py (代碼以下)
|
首先是消息發送程序: manager.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
|
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import
pika
import
sys
parameters
=
pika.ConnectionParameters(host
=
'localhost'
)
connection
=
pika.BlockingConnection(parameters)
channel
=
connection.channel()
channel.queue_declare(queue
=
'task_queue'
, durable
=
True
)
message
=
' '
.join(sys.argv[
1
:])
or
"Hello World!"
channel.basic_publish(exchange
=
'',
routing_key
=
'task_queue'
,
body
=
message,
properties
=
pika.BasicProperties(
delivery_mode
=
2
,
# make message persistent
))
print
" [x] Sent %r"
%
(message,)
connection.close()
|
其中第8行的 durable=True 聲明瞭隊列須要持久化,第14行的 delivery_mode = 2 聲明瞭隊列的消息須要持久化。
而後寫一個接收消息腳本:worker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
|
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import
pika
import
time
connection
=
pika.BlockingConnection(pika.ConnectionParameters(
host
=
'localhost'
))
channel
=
connection.channel()
channel.queue_declare(queue
=
'task_queue'
, durable
=
True
)
print
' [*] Waiting for messages. To exit press CTRL+C'
def
callback(ch, method, properties, body):
print
" [x] Received %r"
%
(body,)
time.sleep( body.count(
'.'
) )
print
" [x] Done"
ch.basic_ack(delivery_tag
=
method.delivery_tag)
channel.basic_qos(prefetch_count
=
1
)
channel.basic_consume(callback,
queue
=
'task_queue'
)
channel.start_consuming()
|
其中第15行的 basic_ack 是執行完任務通知rabbitmq,第17行的basic_qos是告訴rabbitmq只有當worker完成了任務之後才分派1條新的消息,實現公平分派。
測試方法,開3個bash,2個跑worker,1個跑manager:
1
2
3
4
|
$ python manager.py task1.
$ python manager.py task2..
$ python manager.py task3...
$ python manager.py task4....
|
點號數量決定worker工做的時間( 實際上是睡覺時間,呵呵 time.sleep(body.count('.')) )。
而在worker那邊,能夠看到每一個worker都處理了兩個任務。
這種分配機制就是所謂的循環調度(Round-robin dispatching)
4,實例三:發佈和訂閱
發佈訂閱模式,簡單來講就像是廣播,一個消息發佈出來之後,全部訂閱者都能聽到,至於接收到這個信息之後你們作什麼就看具體我的了。
啊!怎麼突然冒出個X,是什麼玩意!這個X就是所謂的exchange,簡單來講就是消息的管家,由他決定接收到的信息是放特定的隊列,仍是全部隊列,仍是直接丟棄。
其實在前兩個實例裏面,已經用到了exchange (channel.basic_publish(exchange='',...),這個exchange的名字爲空,外號無名(人若無名,即可專心練劍~)。他會把你的消息都轉達給routing_key指明的隊列。
當咱們聲明瞭exchange之後,咱們須要爲queue和exchange創建聯繫,這時候,就要用到綁定(binding)了。
1
2
3
|
$
cd
tut3
$ vim emitlog.py (代碼以下)
$ vim recelog.py (代碼以下)
|
emitlog.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
|
#!/usr/bin/env python
import
pika
import
sys
connection
=
pika.BlockingConnection(pika.ConnectionParameters(
host
=
'localhost'
))
channel
=
connection.channel()
channel.exchange_declare(exchange
=
'logs'
,
type
=
'fanout'
)
message
=
' '
.join(sys.argv[
1
:])
or
"info: Hello World!"
channel.basic_publish(exchange
=
'logs'
,
routing_key
=
'',
body
=
message)
print
" [x] Sent %r"
%
(message,)
connection.close()
|
recelog.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
|
#!/usr/bin/env python
import
pika
connection
=
pika.BlockingConnection(pika.ConnectionParameters(
host
=
'localhost'
))
channel
=
connection.channel()
channel.exchange_declare(exchange
=
'logs'
,
type
=
'fanout'
)
result
=
channel.queue_declare(exclusive
=
True
)
queue_name
=
result.method.queue
channel.queue_bind(exchange
=
'logs'
,
queue
=
queue_name)
print
' [*] Waiting for logs. To exit press CTRL+C'
def
callback(ch, method, properties, body):
print
" [x] %r"
%
(body,)
channel.basic_consume(callback,
queue
=
queue_name,
no_ack
=
True
)
channel.start_consuming()
|
測試:
和前一個實例差很少。開3個bash,2個跑recelog,1個跑emitlog。查看recelog是否都收到emitlog發送的消息。代碼裏面用 了一個fanout(意思是成扇形展開)類型的exchange,只要和exchange綁定的queue都能收到一份消息的 copy,routing_key會被忽略掉。
5,路由模式 (選擇接收信息)
1
2
3
|
$
cd
tut4
$ vim emitlog.py (代碼以下)
$ vim recelog.py (代碼以下)
|
emitlog.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
|
#!/usr/bin/env python
import
pika
import
sys
connection
=
pika.BlockingConnection(pika.ConnectionParameters(
host
=
'localhost'
))
channel
=
connection.channel()
channel.exchange_declare(exchange
=
'direct_logs'
,
type
=
'direct'
)
severity
=
sys.argv[
1
]
if
len
(sys.argv) >
1
else
'info'
message
=
' '
.join(sys.argv[
2
:])
or
'Hello World!'
channel.basic_publish(exchange
=
'direct_logs'
,
routing_key
=
severity,
body
=
message)
print
" [x] Sent %r:%r"
%
(severity, message)
connection.close()
|
這裏聲明exchange時類型定義爲direct(直接匹配),就是說只有當一個信息的routing_key和隊列的binding_key一 致時,信息纔會被放入到這個隊列。消息發佈給exchange時必須帶上routing_key。其實在消息生產端,隊列這個概念是透明的。
recelog.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
|
#!/usr/bin/env python
import
pika
import
sys
connection
=
pika.BlockingConnection(pika.ConnectionParameters(
host
=
'localhost'
))
channel
=
connection.channel()
channel.exchange_declare(exchange
=
'direct_logs'
,
type
=
'direct'
)
result
=
channel.queue_declare(exclusive
=
True
)
queue_name
=
result.method.queue
severities
=
sys.argv[
1
:]
if
not
severities:
print
>> sys.stderr,
"Usage: %s [info] [warning] [error]"
%
\
(sys.argv[
0
],)
sys.exit(
1
)
for
severity
in
severities:
channel.queue_bind(exchange
=
'direct_logs'
,
queue
=
queue_name,
routing_key
=
severity)
print
' [*] Waiting for logs. To exit press CTRL+C'
def
callback(ch, method, properties, body):
print
" [x] %r:%r"
%
(method.routing_key, body,)
channel.basic_consume(callback,
queue
=
queue_name,
no_ack
=
True
)
channel.start_consuming()
|
這裏首先定義exchange,和消息發送端是同樣的。而後定義隊列,隊列是自動命名,而且只要進程終止,隊列就會終止。而後把隊列和 exchange綁定,綁定時的routing_key是用戶輸入的,若是輸入多個key,就作屢次的綁定。注意這裏的隊列仍是一個。若是你須要創建兩個 隊列,就得跑兩次這個python腳本。
6,topic和rpc
官方tutorial還有兩個高級一點的實例,topic和rpc,這裏就不做說明了,留着你們學學英文吧 RabbitMQ提供了不少消息隊列客戶端代碼,好比python,java,c等等,你們能夠根據產品或項目的實際狀況選擇。關鍵是原理必須搞懂。