機器學習算法之多項式迴歸

多項式迴歸,採用升維的方式,把x的冪看成新的特徵,再利用線性迴歸方法解決

import numpy as np import matplotlib.pyplot as plt ​ x = np.random.uniform(-4,4,100) y = 0.6*x**2 + x + 2 + np.random.normal(size=100) ​ # 單線性迴歸
from sklearn.linear_model import LinearRegression lin_reg = LinearRegression() lin_reg.fit(X,y) y_predict = lin_reg.predict(X) ​ # 多線性迴歸 X2 = np.hstack([X,X**2]) lin_reg = LinearRegression() lin_reg.fit(X2,y) y_predict2 = lin_reg.predict(X2) ​ plt.scatter(X,y) plt.plot(np.sort(x),y_predict2[np.argsort(x)],color='r') plt.show() ​ lin_reg.coef_ # array([0.98046078, 0.59747765])
lin_reg.intercept_  # 2.0771588970176973

Scikit-learn中實現

from sklearn.preprocessing import PolynomialFeatures ​ poly = PolynomialFeatures(degree=2) # degree表示設置的最高冪的次數
X2 = poly.fit_transform(X) X2.shape  # (100, 3)
​ lin_reg = LinearRegression() lin_reg.fit(X2,y) y_predict2 = lin_reg.predict(X2) ​ plt.scatter(X,y) plt.plot(np.sort(x),y_predict2[np.argsort(x)],color='r') plt.show() ​ lin_reg.coef_ # array([0. ,0.98046078, 0.59747765])
lin_reg.intercept_  # 2.0771588970176964

Pipeline實現

from sklearn.pipeline import Pipeline from sklearn.preprocessing import StandardScaler ​ pipeline = Pipeline([ ('poly',PolynomialFeatures(degree=2)), ('std_scaler',StandardScaler()), ('lin_reg',LinearRegression()) ]) X3 = pipeline.fit(X,y) y_predict3 = pipeline.predict(X) ​ # pipeline.coef_ # 該項報錯! 放入管道後,不能直接取係數???

過擬合和欠擬合

def plot_learning_curve(algo, X_train, X_test, y_train, y_test):
    train_score = []
    test_score = []
    for i in range(1, len(X_train)+1):
        algo.fit(X_train[:i], y_train[:i])
    
        y_train_predict = algo.predict(X_train[:i])
        train_score.append(mean_squared_error(y_train[:i], y_train_predict))
    
        y_test_predict = algo.predict(X_test)
        test_score.append(mean_squared_error(y_test, y_test_predict))
        
    plt.plot([i for i in range(1, len(X_train)+1)], 
                               np.sqrt(train_score), label="train")
    plt.plot([i for i in range(1, len(X_train)+1)], 
                               np.sqrt(test_score), label="test")
    plt.legend()
    plt.axis([0, len(X_train)+1, 0, 4])
    plt.show()
    
plot_learning_curve(LinearRegression(), X_train, X_test, y_train, y_test)
​
poly2_reg = PolynomialRegression(degree=2)
plot_learning_curve(poly2_reg, X_train, X_test, y_train, y_test)

交叉驗證

 

默認分紅3份,要自定義,則修改參數 cvpython

cross_val_score(estimator,X_train,y_train) 結果返回3組(默認cv=3)的評分git

import numpy as np from sklearn import datasets digits = datasets.load_digits() X,y = digits.data,digits.target from sklearn.model_selection import train_test_split ​ X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=666) ​ from sklearn.model_selection import cross_val_score from sklearn.neighbors import KNeighborsClassifier ​ knn_clf = KNeighborsClassifier() cross_val_score(knn_clf,X_train,y_train) # array([0.98895028, 0.97777778, 0.96629213])
​ best_k, best_p, best_score = 0, 0, 0 for k in range(2, 11): for p in range(1, 6): knn_clf = KNeighborsClassifier(weights="distance", n_neighbors=k, p=p) # knn_clf.fit(X_train, y_train)
        # score = knn_clf.score(X_test, y_test)
        scores = cross_val_score(knn_clf,X_train,y_train,cv=3) score = np.mean(scores) if score > best_score: best_k, best_p, best_score = k, p, score print("Best K =", best_k) print("Best P =", best_p) print("Best Score =", best_score) ''' Best K = 2 Best P = 2 Best Score = 0.9823599874006478 ''' best_knn_clf = KNeighborsClassifier(weights="distance", n_neighbors=2, p=2) best_knn_clf.fit(X_train,y_train) # y_predict = best_knn_clf.predict(X_test)
best_knn_clf.score(X_test,y_test) # 0.980528511821975

回顧網格搜索算法

from sklearn.model_selection import GridSearchCV ​ grid_params = { 'weights': ['distance'], 'n_neighbors': [i for i in range(2, 11)], 'p': [i for i in range(1, 6)] } knn2_clf = KNeighborsClassifier() clf = GridSearchCV(knn2_clf,grid_params,cv=3,n_jobs=-1) clf.fit(X_train,y_train) clf.best_score_ # 0.9823747680890538
clf.best_params_ # {'n_neighbors': 2, 'p': 2, 'weights': 'distance'}
clf.best_estimator_ # KNeighborsClassifier(n_neighbors=2, p=2,weights='distance')

誤差和方差

 

誤差和方差一般是矛盾的.網絡

減低誤差,會提升方差.app

減低方差,會提升誤差.dom

有些算法天生是高方差的算法,如kNN.機器學習

非參數學習一般都是高方差算法,由於不對數據進行任何假設.函數

有些算法天生是高誤差的算法,如線性迴歸.學習

參數學習一般都是高誤差算法,由於對數據具備及強的假設.測試

 

機器學習算法,一般要解決的是高方差問題,好比過擬合,一般手段:

  1. 下降模型複雜度

  2. 減小數據維度;降噪

  3. 增長樣本數

  4. 使用驗證集

  5. 模型正則化

模型正則化--嶺迴歸

參數--alpha

import numpy as np import matplotlib.pyplot as plt ​ # 構建數據集
np.random.seed(42) x = np.random.uniform(-3.0, 3.0, size=100) X = x.reshape(-1, 1) y = 0.5 * x + 3 + np.random.normal(0, 1, size=100) plt.scatter(x, y) plt.show() ​ # 建立管道--多項式線性迴歸
from sklearn.pipeline import Pipeline from sklearn.preprocessing import PolynomialFeatures from sklearn.preprocessing import StandardScaler from sklearn.linear_model import LinearRegression ​ def PolynomialRegression(degree): return Pipeline([ ("poly", PolynomialFeatures(degree=degree)), ("std_scaler", StandardScaler()), ("lin_reg", LinearRegression()) ]) ​ # 切割數據集爲訓練和測試集
from sklearn.model_selection import train_test_split ​ np.random.seed(666) X_train, X_test, y_train, y_test = train_test_split(X, y) ​ # fit訓練數據集,predict測試數據集,求取均方偏差MSE
from sklearn.metrics import mean_squared_error ​ poly_reg = PolynomialRegression(degree=20) poly_reg.fit(X_train, y_train) ​ y_poly_predict = poly_reg.predict(X_test) mean_squared_error(y_test, y_poly_predict) # 167.94010867293571 # 繪製擬合函數曲線圖
def plot_model(model): X_plot = np.linspace(-3, 3, 100).reshape(100, 1) y_plot = model.predict(X_plot) plt.scatter(x, y) plt.plot(X_plot[:,0], y_plot, color='r') plt.axis([-3, 3, 0, 6]) plt.show() ​ plot_model(poly_reg) ​ # 使用嶺迴歸
from sklearn.linear_model import Ridge ​ def RidgeRegression(degree, alpha): return Pipeline([ ("poly", PolynomialFeatures(degree=degree)), ("std_scaler", StandardScaler()), ("ridge_reg", Ridge(alpha=alpha)) ]) ​ ridge1_reg = RidgeRegression(20, 0.0001)  # 1.3233492754051845 崎嶇的線條 # ridge1_reg = RidgeRegression(20, 1) # 1.1888759304218448 崎嶇的光滑曲線 # ridge1_reg = RidgeRegression(20, 100) # 1.3196456113086197 光滑的曲線 # ridge1_reg = RidgeRegression(20, 10000) # 1.8408455590998372 和x軸平行的直線 # 解析: 當alpha無窮大時,theta(i,i>=1)的平方必須都趨於0,當theta(i)都等於0時,即y=theta(0),和x軸平行
ridge1_reg.fit(X_train, y_train) ​ y1_predict = ridge1_reg.predict(X_test) mean_squared_error(y_test, y1_predict) # 1.3233492754051845
plot_model(ridge1_reg)

模型正則化--LASSO迴歸

 lasso迴歸和嶺迴歸比較

# 建立lasso管道
from sklearn.linear_model import Lasso def LassoRegression(degree, alpha): return Pipeline([ ("poly", PolynomialFeatures(degree=degree)), ("std_scaler", StandardScaler()), ("lasso_reg", Lasso(alpha=alpha)) ]) lasso1_reg = LassoRegression(20, 0.01) # 1.1496080843259966 # lasso1_reg = LassoRegression(20, 0.1) # 1.1213911351818648 # lasso1_reg = LassoRegression(20, 1) # 1.8408939659515595
lasso1_reg.fit(X_train, y_train) ​ y1_predict = lasso1_reg.predict(X_test) mean_squared_error(y_test, y1_predict) ​ plot_model(lasso1_reg)

模型泛化--更具廣泛性

咱們訓練機器學習的模型,不是爲了在咱們的訓練集上有很好的測試結果,而是爲了應對將來,在未知的數據集下有更好的預測結果.

L1&L2&彈性網絡

 

 

注: 上述筆記是本身在 慕課網學習 劉宇波老師<Python3入門機器學習 經典算法與應用>課程時整理的, 截圖皆是來自視頻中的ppt. 附網課視頻連接: https://s.imooc.com/Sk8Yr5g

相關文章
相關標籤/搜索