Fork/Join框架原理和使用探祕

什麼是Fork/Join框架

Fork/Join框架是Java7提供了的一個用於並行執行任務的框架, 是一個把大任務分割成若干個小任務,最終彙總每一個小任務結果後獲得大任務結果的框架。也是當前執行速度最快的併發框架。算法

工做竊取算法

工做竊取(work-stealing)算法是指某個線程從其餘隊列裏竊取任務來執行。工做竊取的運行流程圖以下:安全

fj

那麼爲何須要使用工做竊取算法呢?假如咱們須要作一個比較大的任務,咱們能夠把這個任務分割爲若干互不依賴的子任務,爲了減小線程間的競爭,因而把這些子任務分別放到不一樣的隊列裏,併爲每一個隊列建立一個單獨的線程來執行隊列裏的任務,線程和隊列一一對應,好比A線程負責處理A隊列裏的任務。可是有的線程會先把本身隊列裏的任務幹完,而其餘線程對應的隊列裏還有任務等待處理。幹完活的線程與其等着,不如去幫其餘線程幹活,因而它就去其餘線程的隊列裏竊取一個任務來執行。而在這時它們會訪問同一個隊列,因此爲了減小竊取任務線程和被竊取任務線程之間的競爭,一般會使用雙端隊列,被竊取任務線程永遠從雙端隊列的頭部拿任務執行,而竊取任務的線程永遠從雙端隊列的尾部拿任務執行。多線程

工做竊取算法的優勢是充分利用線程進行並行計算,並減小了線程間的競爭,其缺點是在某些狀況下仍是存在競爭,好比雙端隊列裏只有一個任務時。而且消耗了更多的系統資源,好比建立多個線程和多個雙端隊列。併發

咱們能夠經過一個實例的改進來逐步剖析fork/join框架的使用,而後再來對其任務的源碼進行分析其實現方式。框架

咱們先來創建一個實驗,該實驗是投擲兩粒骰子一億次,並獲取出現每種結果(兩骰子的點數相加的和,必然在2到12之間)與其出現機率的狀況,咱們先採用線程調度和等待線程池中的某項任務完成來處理。 dom

public class ManualDiceRollsOne {
    //投擲兩次骰子的次數
    private static final int N = 100000000;
    //一次的佔比
    private final double fraction;
    //每次投2次骰子的點數之和與機率的映射
    private final Map<Integer,Double> results;
    //計算機線程數
    private final int numbersOfThreads;
    //線程池
    private final ExecutorService executor;
    //每一個線程的工做次數
    private final int workPerThread;


    public ManualDiceRollsOne() {
        fraction = 1.0 / N;
        results = new ConcurrentHashMap<>();
        numbersOfThreads = Runtime.getRuntime().availableProcessors() * 2;
        executor = Executors.newFixedThreadPool(numbersOfThreads);
        workPerThread = N / numbersOfThreads;
    }

    public void simulateDiceRoles() {
        //計算全部投擲2次骰子的結果機率
        List<Future<?>> futures = submitJobs();
        //等待結果,拿取結果
        awaitCompletion(futures);
        //打印結果
        printResults();
    }

    private void printResults() {
        //等同於results.entrySet().forEach(entry -> System.out.println(entry));
        results.entrySet().forEach(System.out::println);
    }

    private List<Future<?>> submitJobs() {
        List<Future<?>> futures = new ArrayList<>();
        for (int i = 0;i < numbersOfThreads;i++) {
            //我把個人全部計算任務所有交給Future集合,彼此間不影響
            futures.add(executor.submit(makeJob()));
        }

        return futures;
    }

    private Runnable makeJob() {
        return () -> {
            //ThreadLocalRandom對應於不一樣線程都有一個線程的隨機種子值
            //在多線程下當使用ThreadLocalRandom來生成隨機數
            ThreadLocalRandom random = ThreadLocalRandom.current();
            for (int i = 0;i < workPerThread;i++) {
                int entry = twoDiceThrows(random);
                //獲取每次投擲2個骰子的點數之和,增長每次的機率(億分之一),存入
                //線程安全集合ConcurrentHashMap中
                accumuLateResult(entry);
            }
        };
    }

    private void accumuLateResult(int entry) {
        //Map的compute方法第二參數爲BiFunction的函數式接口,給定兩種不一樣的參數對象,返回另外一個結果對象,這三種對象
        //能夠相同,能夠不一樣
        //若是results的entry鍵的值爲null(該鍵不存在),則把該值設爲fraction(單次機率億分之一)
        //不然將該鍵的值設爲原值加上fraction(單次機率億分之一)
        results.compute(entry,(key,previous) -> previous == null ? fraction : previous + fraction);
    }

    private int twoDiceThrows(ThreadLocalRandom random) {
        int firstThrow = random.nextInt(1,7);
        int secondThrow = random.nextInt(1,7);
        return firstThrow + secondThrow;
    }

    private void awaitCompletion(List<Future<?>> futures) {
        //等待全部的計算任務完成後,拿取計算結果,關閉線程池
        futures.forEach(future -> {
            try {
                future.get();
            }catch (Exception e) {
                e.printStackTrace();
            }
        });
        executor.shutdown();
    }

    public static void main(String[] args) {
        ManualDiceRollsOne rolls = new ManualDiceRollsOne();
        long start = System.currentTimeMillis();
        rolls.simulateDiceRoles();
        System.out.println(System.currentTimeMillis() - start);
    }
}

運行結果異步

2=0.027757480001947783async

3=0.05559653000661176ide

4=0.08333084999680387函數

5=0.11108438998219564

6=0.13888012996756519

7=0.16669714995292353

8=0.13887485996756796

9=0.11109162998219183

10=0.0833178699968107

11=0.05558395000660965

12=0.02778516000195242

5638

這是一個傳統多線程的調度計算,因爲有ConcurrentHashMap的存在,在多線程中運行速度較慢,運行完時間爲5秒6,此時甚至比不過單線程的速度。

public class ManualDiceRollsThree {
    //投擲兩次骰子的次數
    private static final int N = 100000000;
    //一次的佔比
    private double fraction = 1.0 / N;
    //每次投2次骰子的點數之和與機率的映射
    private Map<Integer,Double> results = new HashMap<>();

    private void printResults() {
        //等同於results.entrySet().forEach(entry -> System.out.println(entry));
        results.entrySet().forEach(System.out::println);
    }

    public void simulateDiceRoles() throws InterruptedException {
        for (int i = 0;i < N;i++) {
            int entry = twoDiceThrows();
            results.compute(entry,(k,v) -> v == null ? fraction : v + fraction);
        }
        printResults();
    }

    private int twoDiceThrows() {
        ThreadLocalRandom random = ThreadLocalRandom.current();
        int firstThrow = random.nextInt(1,7);
        int secondThrow = random.nextInt(1,7);
        return firstThrow + secondThrow;
    }

    public static void main(String[] args) throws InterruptedException {
        ManualDiceRollsThree manualDiceRollsThree = new ManualDiceRollsThree();
        long start = System.currentTimeMillis();
        manualDiceRollsThree.simulateDiceRoles();
        System.out.println(System.currentTimeMillis() - start);
    }
}

運行結果

2=0.027763110001948726
3=0.05556761000660691
4=0.08331852999681036
5=0.11113696998216796
6=0.13886518996757305
7=0.16663615995295564
8=0.13883302996758998
9=0.11116849998215136
10=0.08339849999676827
11=0.055518730006598724
12=0.027793670001953846
1600

此時咱們對多線程的例子進行一次fork/join框架的改造

public class ManualDiceRollsFour {
    //投擲兩次骰子的次數
    private static final int N = 100000000;
    //一次的佔比
    private double fraction = 1.0 / N;
    //每次投2次骰子的點數之和與機率的映射
    private Map<Integer,Double> results = new ConcurrentHashMap<>();
    private final ForkJoinPool forkJoinPool = new ForkJoinPool(Runtime.getRuntime().availableProcessors() * 2);

    private AtomicInteger count = new AtomicInteger(0);

    private void printResults() {
        //等同於results.entrySet().forEach(entry -> System.out.println(entry));
        results.entrySet().forEach(System.out::println);
    }

    public void simulateDiceRoles() throws InterruptedException {
        ForkJoinTask<Void> task = forkJoinPool.submit(makeJob());
        task.join();
        //打印結果
        printResults();
//        System.out.println(count.get());
    }

    private CountTask makeJob() {
        CountTask countTask = new CountTask(0,N);
        return countTask;
    }

    private void accumuLateResult(int entry) {
        //Map的compute方法第二參數爲BiFunction的函數式接口,給定兩種不一樣的參數對象,返回另外一個結果對象,這三種對象
        //能夠相同,能夠不一樣
        //若是results的entry鍵的值爲null(該鍵不存在),則把該值設爲fraction(單次機率億分之一)
        //不然將該鍵的值設爲原值加上fraction(單次機率億分之一)
        results.compute(entry,(key,previous) -> previous == null ? fraction : previous + fraction);
    }

    private int twoDiceThrows() {
        ThreadLocalRandom random = ThreadLocalRandom.current();
        int firstThrow = random.nextInt(1,7);
        int secondThrow = random.nextInt(1,7);
        return firstThrow + secondThrow;
    }

    private class CountTask extends RecursiveAction {
        private static final int THRESHOLD = 2000000;
        private int start;
        private int end;

        public CountTask(int start,int end) {
            this.start = start;
            this.end = end;
        }
        @Override
        protected void compute() {
            boolean canCompute = (end - start) <= THRESHOLD;
            //最終計算,全部的最終拆分都是在這裏計算
            if (canCompute) {
                for (int i = start;i < end;i++) {
                    int entry = twoDiceThrows();
                    accumuLateResult(entry);
//                    count.incrementAndGet();
                }
            }else {
                //並行計算的規模,拆分紅50個並行計算
                int step = (start + end) / 50;
                //建立子任務線程集合
                List<CountTask> subTasks = new ArrayList<>();
                //每一個並行子任務的開始值
                int pos = start;
                //並行執行50個分叉線程
                for (int i = 0; i < 50; i++) {
                    //每一個並行子任務的結束值
                    int lastOne = pos + step;
                    if (lastOne > end) {
                        lastOne = end;
                    }
                    //創建一個子任務的線程
                    CountTask subTask = new CountTask(pos, lastOne);
                    //建立下一個並行子任務的開始值
                    pos += step + 1;
                    //將當前子任務線程添加到線程集合
                    subTasks.add(subTask);
                    //執行該線程,實際上是一個遞歸,判斷lastOne-pos是否小於THRESHOLD,小於則真正執行,不然繼續分叉50個子線程
                    subTask.fork();
                }
                for (CountTask task : subTasks) {
                    task.join();
                }
            }
        }
    }

    public static void main(String[] args) throws InterruptedException {
        ManualDiceRollsFour manualDiceRollsFour = new ManualDiceRollsFour();
        long start = System.currentTimeMillis();
        manualDiceRollsFour.simulateDiceRoles();
        System.out.println(System.currentTimeMillis() - start);
    }
}

運行結果

2=0.027765680001949157
3=0.055569410006607214
4=0.08334217999679791
5=0.11114915998216154
6=0.13889079996755957
7=0.16668756995292858
8=0.13887695996756685
9=0.11111537998217932
10=0.08329060999682505
11=0.055536280006601664
12=0.0277754800019508
6185

按照常理來講,多線程在如此大數據量的狀況下理應快過單線程,形成這種狀況的結果,只能說明是ConcurrentHashMap在億級運算的並行下阻礙了運行的速度,如今咱們要將ConcurrentHashMap去掉,徹底在沒有ConcurrentHashMap的狀況下使用fork/join框架。

public class ManualDiceRollsFive {
    //投擲兩次骰子的次數
    private static final int N = 100000000;
    //一次的佔比
    private double fraction = 1.0 / N;
    //每次投2次骰子的點數之和與機率的映射
    private Map<Integer,Double> results;
    private final ForkJoinPool forkJoinPool = new ForkJoinPool(Runtime.getRuntime().availableProcessors() * 2);

    private void printResults() {
        //等同於results.entrySet().forEach(entry -> System.out.println(entry));
        results.entrySet().forEach(System.out::println);
    }

    public void simulateDiceRoles() throws InterruptedException {
        ForkJoinTask<Map<Integer, Double>> result = forkJoinPool.submit(makeJob());
        try {
            this.results = result.get();
        } catch (ExecutionException e) {
            e.printStackTrace();
        }
        //打印結果
        printResults();
        forkJoinPool.shutdown();
//        System.out.println(count.get());
    }

    private CountTask makeJob() {
        CountTask countTask = new CountTask(0,N);
        return countTask;
    }

    private int twoDiceThrows(ThreadLocalRandom random) {
        int firstThrow = random.nextInt(1,7);
        int secondThrow = random.nextInt(1,7);
        return firstThrow + secondThrow;
    }

    private class CountTask extends RecursiveTask<Map<Integer,Double>> {
        private static final int THRESHOLD = 2000000;
        private int start;
        private int end;

        public CountTask(int start,int end) {
            this.start = start;
            this.end = end;
        }
        @Override
        protected Map<Integer,Double> compute() {
            Map<Integer,Double> result = new HashMap<>();
            IntStream.range(2,13).sequential().forEach(i -> result.put(i,0.0));
            ThreadLocalRandom random = ThreadLocalRandom.current();
            boolean canCompute = (end - start) <= THRESHOLD;
            //最終計算,全部的最終拆分都是在這裏計算
            if (canCompute) {
                for (int i = start;i < end;i++) {
                    int entry = twoDiceThrows(random);
                    result.compute(entry,(k,v) -> v == 0.0 ? fraction : v + fraction);
//                    accumuLateResult(entry);
//                    count.incrementAndGet();
                }
            }else {
                //並行計算的規模,拆分紅50個並行計算
                int step = (start + end) / 50;
                //建立子任務線程集合
                List<CountTask> subTasks = new ArrayList<>();
                //每一個並行子任務的開始值
                int pos = start;
                //並行執行50個分叉線程
                for (int i = 0; i < 50; i++) {
                    //每一個並行子任務的結束值
                    int lastOne = pos + step;
                    if (lastOne > end) {
                        lastOne = end;
                    }
                    //創建一個子任務的線程
                    CountTask subTask = new CountTask(pos, lastOne);
                    //建立下一個並行子任務的開始值
                    pos += step + 1;
                    //將當前子任務線程添加到線程集合
                    subTasks.add(subTask);
                    //執行該線程,實際上是一個遞歸,判斷lastOne-pos是否小於THRESHOLD,小於則真正執行,不然繼續分叉50個子線程
                    subTask.fork();
                }
                for (CountTask task : subTasks) {
                    Map<Integer,Double> taskMap = task.join();
                    result.entrySet().stream().forEach(entry -> result.compute(entry.getKey(),
                            (k,v) -> v == 0.0 ? taskMap.get(k) : v + taskMap.get(k)));
                }
            }
            return result;
        }
    }

    public static void main(String[] args) throws InterruptedException {
        ManualDiceRollsFive manualDiceRollsFive = new ManualDiceRollsFive();
        long start = System.currentTimeMillis();
        manualDiceRollsFive.simulateDiceRoles();
        System.out.println(System.currentTimeMillis() - start);
    }
}

運行結果

2=0.02779156000000586
3=0.055543890000069124
4=0.0833797699999038
5=0.11111334999973911
6=0.13887251999957423
7=0.16666815999940918
8=0.13892032999957402
9=0.11105938999973942
10=0.08332794999990413
11=0.05555078000006909
12=0.02777181000000576
546

這個纔是多線程應有的速度,徹底不存在鎖的限制。經過這樣一個例子的改造,咱們能夠看到CountTask任務類繼承過兩種父類RecursiveTask和RecursiveAction,而這兩種類其實又都繼承於同一個父類ForkJoinTask。

a.RecursiveAction:用於沒有返回結果的任務

b.RecursiveTask:用於有返回結果的任務

而全部這些任務對象須要提交到ForkJoinPool線程池來執行

private final ForkJoinPool forkJoinPool = new ForkJoinPool(Runtime.getRuntime().availableProcessors() * 2);

跟進源碼咱們能夠看到

public ForkJoinPool(int parallelism,
                    ForkJoinWorkerThreadFactory factory,
                    UncaughtExceptionHandler handler,
                    boolean asyncMode) {
    this(checkParallelism(parallelism),
         checkFactory(factory),
         handler,
         asyncMode ? FIFO_QUEUE : LIFO_QUEUE,
         "ForkJoinPool-" + nextPoolId() + "-worker-");
    checkPermission();
}
private ForkJoinPool(int parallelism,
                     ForkJoinWorkerThreadFactory factory,
                     UncaughtExceptionHandler handler,
                     int mode,
                     String workerNamePrefix) {
    this.workerNamePrefix = workerNamePrefix; //工做線程名前綴
    this.factory = factory;  //工做線程建立工廠
    this.ueh = handler; //異常處理handler
    this.config = (parallelism & SMASK) | mode; //並行度,當前機器的cpu核數 mode 任務隊列出隊模式 異步:先進先出,同步:後進先出
    long np = (long)(-parallelism); // offset ctl counts
    this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
}

看完初始化的代碼咱們能夠知道原來建立ForkJoinPool建立workerThread的工做都是統一由一個叫ForkJoinWorkerThreadFactory的工廠去建立,建立出來的線程都有一個統一的前輟名稱"ForkJoinPool-" + nextPoolId() + "-worker-".隊列出隊模式是LIFO(後進先出),那這樣後面的入隊的任務是會被先處理的。因此上面代碼到50個分岔,越後面的任務會越先處理,這實際上是對代碼的一種優化!

提交咱們用的是submit()方法,咱們來看一下該方法的源代碼

public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
    if (task == null)
        throw new NullPointerException();
    externalPush(task);
    return task;
}
final void externalPush(ForkJoinTask<?> task) {
    WorkQueue[] ws; WorkQueue q; int m;
    int r = ThreadLocalRandom.getProbe();
    int rs = runState;
    if ((ws = workQueues) != null && (m = (ws.length - 1)) >= 0 &&
        (q = ws[m & r & SQMASK]) != null && r != 0 && rs > 0 &&
        U.compareAndSwapInt(q, QLOCK, 0, 1)) {
        ForkJoinTask<?>[] a; int am, n, s;
        if ((a = q.array) != null &&
            (am = a.length - 1) > (n = (s = q.top) - q.base)) {
            int j = ((am & s) << ASHIFT) + ABASE;
            U.putOrderedObject(a, j, task);
            U.putOrderedInt(q, QTOP, s + 1);
            U.putIntVolatile(q, QLOCK, 0);
            if (n <= 1)
                signalWork(ws, q);
            return;
        }
        U.compareAndSwapInt(q, QLOCK, 1, 0);
    }
    externalSubmit(task);
}
private void externalSubmit(ForkJoinTask<?> task) {
    int r;                                    // initialize caller's probe
    if ((r = ThreadLocalRandom.getProbe()) == 0) {
        ThreadLocalRandom.localInit();
        r = ThreadLocalRandom.getProbe();
    }
    for (;;) {     //採用循環入隊的方式
        WorkQueue[] ws; WorkQueue q; int rs, m, k;
        boolean move = false;
        if ((rs = runState) < 0) {
            tryTerminate(false, false);     // help terminate
            throw new RejectedExecutionException();
        }
        else if ((rs & STARTED) == 0 ||     // initialize
                 ((ws = workQueues) == null || (m = ws.length - 1) < 0)) {
            int ns = 0;
            rs = lockRunState();
            try {
                if ((rs & STARTED) == 0) {    // initialize 初始化操做
                    U.compareAndSwapObject(this, STEALCOUNTER, null,
                                           new AtomicLong());
                    // create workQueues array with size a power of two
                    int p = config & SMASK; // ensure at least 2 slots //config就是cpu的核數
                    int n = (p > 1) ? p - 1 : 1;
                    n |= n >>> 1; n |= n >>> 2;  n |= n >>> 4;
                    n |= n >>> 8; n |= n >>> 16; n = (n + 1) << 1; //算出workQueues的大小n,n必定是2的次方數
                    workQueues = new WorkQueue[n];  //初始化隊列,而後跳到最外面的循環繼續把任務入隊
                    ns = STARTED;
                }
            } finally {
                unlockRunState(rs, (rs & ~RSLOCK) | ns);
            }
        }
        else if ((q = ws[k = r & m & SQMASK]) != null) {  //選中了一個一個非空隊列
            if (q.qlock == 0 && U.compareAndSwapInt(q, QLOCK, 0, 1)) {  //利用cas操做加鎖成功!
                ForkJoinTask<?>[] a = q.array;
                int s = q.top;
                boolean submitted = false; // initial submission or resizing
                try {                      // locked version of push
                    if ((a != null && a.length > s + 1 - q.base) ||
                        (a = q.growArray()) != null) {
                        int j = (((a.length - 1) & s) << ASHIFT) + ABASE;  //計算出任務在隊列中的位置
                        U.putOrderedObject(a, j, task);   //把任務放在隊列中
                        U.putOrderedInt(q, QTOP, s + 1);  //更新一次存放的位置
                        submitted = true;
                    }
                } finally {
                    U.compareAndSwapInt(q, QLOCK, 1, 0);  //利用cas操做釋放鎖!
                }
                if (submitted) {
                    signalWork(ws, q);
                    return;   //任務入隊成功了!跳出循環!
                }
            }
            move = true;                   // move on failure
        }
        else if (((rs = runState) & RSLOCK) == 0) { // create new queue  選中的隊列是空,初始化完隊列,而後繼續入隊!
            q = new WorkQueue(this, null);
            q.hint = r;
            q.config = k | SHARED_QUEUE;
            q.scanState = INACTIVE;
            rs = lockRunState();           // publish index
            if (rs > 0 &&  (ws = workQueues) != null &&
                k < ws.length && ws[k] == null)
                ws[k] = q;                 // else terminated
            unlockRunState(rs, rs & ~RSLOCK);
        }
        else
            move = true;                   // move if busy
        if (move)
            r = ThreadLocalRandom.advanceProbe(r);
    }
}

咱們大體說一下上面這些代碼的含義:

經過對externalSubmit方法的代碼進行分析,咱們知道了第一次提交任務給forkJoinPool時是在無限循環for (;;)中入隊。第一步先檢查workQueues是否是尚未建立,若是沒有,則進行建立。以後跳到外層for循環並隨機選取workQueues裏面一個隊列,並判斷隊列是否已建立。沒有建立,則進行建立!後又跳到外層for循環直到選到一個非空隊列而且加鎖成功!這樣最後才把任務入隊~。

     因此咱們知道fork/join的任務隊列workQueues並非初始化的時候就建立好了,而是在有任務提交的時候才建立!而且每次入隊時都須要利用cas操做來進行加鎖和釋放鎖!

而後咱們來看一下任務的分岔fork()方法,此處又被稱爲二次提交

public final ForkJoinTask<V> fork() {
    Thread t;
    if ((t = Thread.currentThread()) instanceof ForkJoinWorkerThread)
        ((ForkJoinWorkerThread)t).workQueue.push(this);  //workerThread直接入本身的workQueue
    else
        ForkJoinPool.common.externalPush(this);
    return this;
}
final void externalPush(ForkJoinTask<?> task) {
    WorkQueue[] ws; WorkQueue q; int m;
    int r = ThreadLocalRandom.getProbe();
    int rs = runState;
    if ((ws = workQueues) != null && (m = (ws.length - 1)) >= 0 &&
        (q = ws[m & r & SQMASK]) != null && r != 0 && rs > 0 &&
        U.compareAndSwapInt(q, QLOCK, 0, 1)) {  //隨機選取了一個非空隊列,而且加鎖成功!下面是普通的入隊過程~
        ForkJoinTask<?>[] a; int am, n, s;
        if ((a = q.array) != null &&
            (am = a.length - 1) > (n = (s = q.top) - q.base)) {
            int j = ((am & s) << ASHIFT) + ABASE;
            U.putOrderedObject(a, j, task);
            U.putOrderedInt(q, QTOP, s + 1);
            U.putIntVolatile(q, QLOCK, 0);
            if (n <= 1)
                signalWork(ws, q);
            return;  //結束方法
        }
        U.compareAndSwapInt(q, QLOCK, 1, 0);  //必定要釋放鎖!
    }
    externalSubmit(task);  //這個就是上面的externalSubmit方法,邏輯是同樣的~
}

從代碼中咱們知道了提交一個fork任務的過程和第一次提交到forkJoinPool的過程是大同小異的。主要區分了提交任務的線程是否是workerThread,若是是,任務直接入workerThread當前的workQueue,不是則嘗試選中一個workQueue q。若是q非空而且加鎖成功則進行入隊,不然執行與第一次任務提交到forkJoinPool差很少的邏輯~。

咱們再來看一下join()方法

public final V join() {
    int s;
    if ((s = doJoin() & DONE_MASK) != NORMAL)
        reportException(s);
    return getRawResult();
}
執行處理前先判斷staus是否是已完成,若是完成了就直接返回
由於這個任務可能被其它線程竊取過去處理完了
private int doJoin() {
    int s; Thread t; ForkJoinWorkerThread wt; ForkJoinPool.WorkQueue w;
    return (s = status) < 0 ? s :
        ((t = Thread.currentThread()) instanceof ForkJoinWorkerThread) ?
        (w = (wt = (ForkJoinWorkerThread)t).workQueue).
        tryUnpush(this) && (s = doExec()) < 0 ? s :
        wt.pool.awaitJoin(w, this, 0L) :
        externalAwaitDone();
}

代碼的調用鏈是從上到下。總體處理邏輯以下:

     線程是workerThread:

     先判斷任務是否已經處理完成,任務完成直接返回,沒有則直接嘗試出隊tryUnpush(this) 而後執行任務處理doExec()。若是沒有出隊成功或者處理成功,則執行wt.pool.awaitJoin(w, this, 0L)。wt.pool.awaitJoin(w, this, 0L)的處理邏輯簡單來講也是在一個for(;;)中不斷的輪詢任務的狀態是否是已完成,完成就直接退出方法。否就繼續嘗試出隊處理。直到任務完成或者超時爲止。

   線程不是workerThread:

   直接進行入externalAwaitDone()

private int externalAwaitDone() {
    int s = ((this instanceof CountedCompleter) ? // try helping
             ForkJoinPool.common.externalHelpComplete(
                 (CountedCompleter<?>)this, 0) :
             ForkJoinPool.common.tryExternalUnpush(this) ? doExec() : 0);
    if (s >= 0 && (s = status) >= 0) {
        boolean interrupted = false;
        do {
            if (U.compareAndSwapInt(this, STATUS, s, s | SIGNAL)) {
                synchronized (this) {
                    if (status >= 0) {
                        try {
                            wait(0L);
                        } catch (InterruptedException ie) {
                            interrupted = true;
                        }
                    }
                    else
                        notifyAll();
                }
            }
        } while ((s = status) >= 0);
        if (interrupted)
            Thread.currentThread().interrupt();
    }
    return s;
}

externalAwaitDone的處理邏輯其實也比較簡單,當前線程本身先嚐試把任務出隊ForkJoinPool.common.tryExternalUnpush(this) ? doExec()而後處理掉,若是不成功就交給workerThread去處理,而後利用object/wait的經典方法去監放任務status的狀態變動。

最後說一下工做竊取,須要看一下ForkJoinWorkerThread

public void run() {
    if (workQueue.array == null) { // only run once
        Throwable exception = null;
        try {
            onStart();
            pool.runWorker(workQueue);  //在這裏處理任務隊列!
        } catch (Throwable ex) {
            exception = ex;
        } finally {
            try {
                onTermination(exception);
            } catch (Throwable ex) {
                if (exception == null)
                    exception = ex;
            } finally {
                pool.deregisterWorker(this, exception);
            }
        }
    }
}
final void runWorker(WorkQueue w) {
    w.growArray();                   // allocate queue  進行隊列的初始化
    int seed = w.hint;               // initially holds randomization hint
    int r = (seed == 0) ? 1 : seed;  // avoid 0 for xorShift
    for (ForkJoinTask<?> t;;) {  //又是無限循環處理任務!
        if ((t = scan(w, r)) != null) //在這裏獲取任務!
            w.runTask(t);
        else if (!awaitWork(w, r))
            break;
        r ^= r << 13; r ^= r >>> 17; r ^= r << 5; // xorshift
    }
}
private ForkJoinTask<?> scan(WorkQueue w, int r) {
    WorkQueue[] ws; int m;
    if ((ws = workQueues) != null && (m = ws.length - 1) > 0 && w != null) {
        int ss = w.scanState;                     // initially non-negative
        for (int origin = r & m, k = origin, oldSum = 0, checkSum = 0;;) {
            WorkQueue q; ForkJoinTask<?>[] a; ForkJoinTask<?> t;
            int b, n; long c;
            if ((q = ws[k]) != null) {   //隨機選中了非空隊列 q
                if ((n = (b = q.base) - q.top) < 0 &&
                    (a = q.array) != null) {      // non-empty
                    long i = (((a.length - 1) & b) << ASHIFT) + ABASE;  //從尾部出隊,b是尾部下標
                    if ((t = ((ForkJoinTask<?>)
                              U.getObjectVolatile(a, i))) != null &&
                        q.base == b) {
                        if (ss >= 0) {
                            if (U.compareAndSwapObject(a, i, t, null)) {  //利用cas出隊
                                q.base = b + 1;
                                if (n < -1)       // signal others
                                    signalWork(ws, q);
                                return t;   //出隊成功,成功竊取一個任務!
                            }
                        }
                        else if (oldSum == 0 &&   // try to activate  隊列沒有激活,嘗試激活
                                 w.scanState < 0)
                            tryRelease(c = ctl, ws[m & (int)c], AC_UNIT);
                    }
                    if (ss < 0)                   // refresh
                        ss = w.scanState;
                    r ^= r << 1; r ^= r >>> 3; r ^= r << 10;
                    origin = k = r & m;           // move and rescan
                    oldSum = checkSum = 0;
                    continue;
                }
                checkSum += b;
            }
            if ((k = (k + 1) & m) == origin) {    // continue until stable k = k + 1表示取下一個隊列 若是(k + 1) & m == origin表示 已經遍歷完所
                                                                           //有隊列了
                if ((ss >= 0 || (ss == (ss = w.scanState))) &&
                    oldSum == (oldSum = checkSum)) {
                    if (ss < 0 || w.qlock < 0)    // already inactive
                        break;
                    int ns = ss | INACTIVE;       // try to inactivate
                    long nc = ((SP_MASK & ns) |
                               (UC_MASK & ((c = ctl) - AC_UNIT)));
                    w.stackPred = (int)c;         // hold prev stack top
                    U.putInt(w, QSCANSTATE, ns);
                    if (U.compareAndSwapLong(this, CTL, c, nc))
                        ss = ns;
                    else
                        w.scanState = ss;         // back out
                }
                checkSum = 0;
            }
        }
    }
    return null;
}

因此咱們知道任務的竊取從workerThread運行的那一刻就已經開始了!先隨機選中一條隊列看能不能竊取到任務,取不到則竊取下一條隊列,直接遍歷完一遍全部的隊列,若是都竊取不到就返回null。

相關文章
相關標籤/搜索