#!/usr/bin/env python # -*- coding: utf-8 -*- import numpy as np#矩陣運算 def tanh(x): return np.tanh(x) def tanh_deriv(x):#對tanh求導 return 1.0 - np.tanh(x)*np.tanh(x) def logistic(x):#s函數 return 1/(1 + np.exp(-x)) def logistic_derivative(x):#對s函數求導 return logistic(x)*(1-logistic(x)) class NeuralNetwork:#面向對象定義一個神經網絡類 def __init__(self, layers, activation='tanh'):#下劃線構造函數self 至關於自己這個類的指針 layer就是一個list 數字表明神經元個數 """ :param layers: A list containing the number of units in each layer. Should be at least two values :param activation: The activation function to be used. Can be "logistic" or "tanh" """ if activation == 'logistic': self.activation = logistic#以前定義的s函數 self.activation_deriv = logistic_derivative#求導函數 elif activation == 'tanh': self.activation = tanh#雙曲線函數 self.activation_deriv = tanh_deriv#求導雙曲線函數 self.weights = []#初始化一個list做爲 權重 #初始化權重兩個值之間隨機初始化 for i in range(1, len(layers) - 1):#有幾層神經網絡 除去輸出層 #i-1層 和i層之間的權重 隨機生成layers[i - 1] + 1 * layers[i] + 1 的矩陣 -0.25-0.25 self.weights.append((2*np.random.random((layers[i - 1] + 1, layers[i] + 1))-1)*0.25) #i層和i+1層之間的權重 self.weights.append((2*np.random.random((layers[i] + 1, layers[i + 1]))-1)*0.25) def fit(self, X, y, learning_rate=0.2, epochs=10000):#訓練神經網絡 #learning rate X = np.atleast_2d(X)#x至少2維 temp = np.ones([X.shape[0], X.shape[1]+1])#初始化一個全爲1的矩陣 temp[:, 0:-1] = X # adding the bias unit to the input layer X = temp y = np.array(y) for k in range(epochs): i = np.random.randint(X.shape[0])#隨機選行 a = [X[i]] for l in range(len(self.weights)): #going forward network, for each layer #選擇一條實例與權重點乘 而且將值傳給激活函數,通過a的append 使得全部神經元都有了值(正向) a.append(self.activation(np.dot(a[l], self.weights[l]))) #Computer the node value for each layer (O_i) using activation function error = y[i] - a[-1] #Computer the error at the top layer 真實值與計算值的差(向量) #經過求導 獲得權重應當調整的偏差 deltas = [error * self.activation_deriv(a[-1])] #For output layer, Err calculation (delta is updated error) #Staring backprobagation 更新weight for l in range(len(a) - 2, 0, -1): # we need to begin at the second to last layer 每次減一 #Compute the updated error (i,e, deltas) for each node going from top layer to input layer deltas.append(deltas[-1].dot(self.weights[l].T)*self.activation_deriv(a[l])) deltas.reverse() for i in range(len(self.weights)): layer = np.atleast_2d(a[i]) delta = np.atleast_2d(deltas[i]) self.weights[i] += learning_rate * layer.T.dot(delta) def predict(self, x): x = np.array(x) temp = np.ones(x.shape[0]+1) temp[0:-1] = x a = temp for l in range(0, len(self.weights)): a = self.activation(np.dot(a, self.weights[l])) return a
異或運算 node
from NeuralNetwork import NeuralNetwork import numpy as np nn = NeuralNetwork([2, 2, 1], 'tanh') X = np.array([[0, 0], [0, 1], [1, 0], [1, 1]]) y = np.array([0, 1, 1, 0]) nn.fit(X, y) for i in [[0, 0], [0, 1], [1, 0], [1, 1]]: print(i, nn.predict(i))
([0, 0], array([-0.00475208])) ([0, 1], array([ 0.99828477])) ([1, 0], array([ 0.99827186])) ([1, 1], array([-0.00776711]))
手寫體識別python
#!/usr/bin/python # -*- coding:utf-8 -*- # 每一個圖片8x8 識別數字:0,1,2,3,4,5,6,7,8,9 import numpy as np from sklearn.datasets import load_digits from sklearn.metrics import confusion_matrix, classification_report from sklearn.preprocessing import LabelBinarizer from NeuralNetwork import NeuralNetwork from sklearn.model_selection import train_test_split digits = load_digits() X = digits.data y = digits.target X -= X.min() # normalize the values to bring them into the range 0-1 X /= X.max() nn = NeuralNetwork([64, 100, 10], 'logistic') X_train, X_test, y_train, y_test = train_test_split(X, y) labels_train = LabelBinarizer().fit_transform(y_train) labels_test = LabelBinarizer().fit_transform(y_test) print "start fitting" nn.fit(X_train, labels_train, epochs=3000) predictions = [] for i in range(X_test.shape[0]): o = nn.predict(X_test[i]) predictions.append(np.argmax(o)) print confusion_matrix(y_test, predictions) print classification_report(y_test, predictions)
confusion_matrix
precision recall f1-score support 0 1.00 0.97 0.99 34 1 0.75 0.91 0.82 46 2 1.00 0.92 0.96 50 3 1.00 0.92 0.96 51 4 0.94 0.91 0.92 53 5 0.95 0.96 0.96 57 6 0.97 0.95 0.96 38 7 0.88 1.00 0.93 35 8 0.88 0.83 0.85 42 9 0.86 0.82 0.84 44 avg / total 0.92 0.92 0.92 450