keras-簡單實現Mnist數據集分類網絡
1.載入數據以及預處理優化
import numpy as np from keras.datasets import mnist from keras.utils import np_utils from keras.models import Sequential from keras.layers import * from keras.optimizers import SGD import os import tensorflow as tf # 載入數據 (x_train,y_train),(x_test,y_test) = mnist.load_data() # 預處理 # 將(60000,28,28)轉化爲(600000,784),好輸入展開層 x_train = x_train.reshape(x_train.shape[0],-1)/255.0 x_test= x_test.reshape(x_test.shape[0],-1)/255.0 # 將輸出轉化爲one_hot編碼 y_train = np_utils.to_categorical(y_train,num_classes=10) y_test = np_utils.to_categorical(y_test,num_classes=10)
2.建立網絡打印訓練結果編碼
# 建立網絡 model = Sequential([ # 輸入784輸出10個 Dense(units=10,input_dim=784,bias_initializer='one',activation='softmax') ]) # 編譯 # 自定義優化器 sgd = SGD(lr=0.1) model.compile(optimizer=sgd, loss='mse', # 獲得訓練過程當中的準確率 metrics=['accuracy']) model.fit(x_train,y_train,batch_size=32,epochs=10,validation_split=0.2) # 評估模型 loss,acc = model.evaluate(x_test,y_test,) print('\ntest loss',loss) print('test acc',acc)
out:lua
Epoch 1/10spa
32/48000 [..............................] - ETA: 2:27 - loss: 0.0905 - acc: 0.1875
1248/48000 [..............................] - ETA: 5s - loss: 0.0907 - acc: 0.1346 code
......blog
......input
Epoch 10/10it
45952/48000 [===========================>..] - ETA: 0s - loss: 0.0164 - acc: 0.9005
47616/48000 [============================>.] - ETA: 0s - loss: 0.0163 - acc: 0.9008
48000/48000 [==============================] - 2s 37us/step - loss: 0.0163 - acc: 0.9010 - val_loss: 0.0149 - val_acc: 0.9084io
32/10000 [..............................] - ETA: 4s
3360/10000 [=========>....................] - ETA: 0s
5824/10000 [================>.............] - ETA: 0s
8512/10000 [========================>.....] - ETA: 0s
10000/10000 [==============================] - 0s 20us/step
test loss 0.015059704356454312test acc 0.908