JavaShuo
欄目
標籤
A deep learning model integrating FCNNs and CRFs for brain tumor segmentation
時間 2020-12-23
原文
原文鏈接
摘要: 1.通過將完全卷積神經網絡(FC-NN)和條件隨機場(CRF)集成在一個統一的框架中,得到一種新的腦腫瘤分割方法,以獲得具有外觀和空間一致性的分割結果。 2.步驟: 我們使用2D圖像訓練基於深度學習的分割模型 以下步驟中的塊和圖像切片: 1)使用圖像塊訓練FCNN; 2)使用固定FCNN參數的圖像切片訓練CRF作爲迴歸神經網絡(CRF-RNN); 3)使用圖像切片微調FCNN和CRF-RN
>>阅读原文<<
相關文章
1.
論文筆記:A deep learning model integrating FCNNs and CRFs for brain tumor segmentation
2.
Learning Contextual and Attentive Information for Brain Tumor Segmentation
3.
Brain tumor segmentation with Deep Neural Networks
4.
LEARNING VOLUMETRIC SEGMENTATION FOR LUNG TUMOR
5.
Deep Learning for Brain MRI Segmentation: State of the Art and Future Directions
6.
Deep Learning for Brain MRI Segmentation: State of the Art and Future Directions論文筆記
7.
Deep Convolutional Nets for Semantic Image Segmentation with Deep Gaussian CRFs
8.
Hierarchical Deep Reinforcement Learning: Integrating Temporal Abstraction and Intrinsic Motivation
9.
Automatic Brain Tumor Segmentation using Cascaded Anisotropic Convolutional Neural Networks
10.
論文閱讀——A Three-Stage Deep Learning Model for Accurate Retinal Vessel Segmentation
更多相關文章...
•
Scala for循環
-
Scala教程
•
Lua for 循環
-
Lua 教程
•
RxJava操作符(七)Conditional and Boolean
•
Java Agent入門實戰(三)-JVM Attach原理與使用
相關標籤/搜索
Deep Learning
segmentation
tumor
crfs
integrating
brain
learning
model
deep
a'+'a
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
外部其他進程嵌入到qt FindWindow獲得窗口句柄 報錯無法鏈接的外部符號 [email protected] 無法被([email protected]@[email protected]@@引用
2.
UVa 11524 - InCircle
3.
The Monocycle(bfs)
4.
VEC-C滑窗
5.
堆排序的應用-TOPK問題
6.
實例演示ElasticSearch索引查詢term,match,match_phase,query_string之間的區別
7.
數學基礎知識 集合
8.
amazeUI 復擇框問題解決
9.
揹包問題理解
10.
算數平均-幾何平均不等式的證明,從麥克勞林到柯西
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
論文筆記:A deep learning model integrating FCNNs and CRFs for brain tumor segmentation
2.
Learning Contextual and Attentive Information for Brain Tumor Segmentation
3.
Brain tumor segmentation with Deep Neural Networks
4.
LEARNING VOLUMETRIC SEGMENTATION FOR LUNG TUMOR
5.
Deep Learning for Brain MRI Segmentation: State of the Art and Future Directions
6.
Deep Learning for Brain MRI Segmentation: State of the Art and Future Directions論文筆記
7.
Deep Convolutional Nets for Semantic Image Segmentation with Deep Gaussian CRFs
8.
Hierarchical Deep Reinforcement Learning: Integrating Temporal Abstraction and Intrinsic Motivation
9.
Automatic Brain Tumor Segmentation using Cascaded Anisotropic Convolutional Neural Networks
10.
論文閱讀——A Three-Stage Deep Learning Model for Accurate Retinal Vessel Segmentation
>>更多相關文章<<