Memcached 是一個高性能的分佈式內存對象緩存系統,用於動態Web應用以減輕數據庫負載。它經過在內存中緩存數據和對象來減小讀取數據庫的次數,從而提升動態、數據庫驅動網站的速度。Memcached基於一個存儲鍵/值對的hashmap。其守護進程(daemon )是用C寫的,可是客戶端能夠用任何語言來編寫,並經過memcached協議與守護進程通訊。html
Memcached安裝和基本使用python
Memcached安裝:git
wget http://memcached.org/latest tar -zxvf memcached-1.x.x.tar.gz cd memcached-1.x.x ./configure && make && make test && sudo make install PS:依賴libevent yum install libevent-devel apt-get install libevent-dev
Windows下:github
下載地址: http://download.csdn.net/download/baidu_23514823/8174255 安裝到windows服務,打開cmd命令行,進入memcached目錄,執行memcached -d install命令,安裝服務。 若是在沒有安裝過的狀況下,出現"failed to install service or service already installed"錯誤,多是cmd.exe須要用管理員身份運行。 windows下須要經過修改註冊表信息進行設置,打開註冊表,找 HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\memcached 在其中有一個「ImagePath」項,值爲: "D:\memcached\memcached.exe" -d runservice 在後面加上「-m 1024 -c 2048 -p 11210」。等便可。重啓服務後生效
啓動Memcachedweb
memcached -d -m 10 -u root -l 10.211.55.4 -p 12000 -c 256 -P /tmp/memcached.pid 參數說明: -d 是啓動一個守護進程 -m 是分配給Memcache使用的內存數量,單位是MB -u 是運行Memcache的用戶 -l 是監聽的服務器IP地址 -p 是設置Memcache監聽的端口,最好是1024以上的端口 -c 選項是最大運行的併發鏈接數,默認是1024,按照你服務器的負載量來設定 -P 是設置保存Memcache的pid文件
Memcached命令redis
存儲命令: set/add/replace/append/prepend/cas 獲取命令: get/gets 其餘命令: delete/stats..
Python操做Memcached算法
安裝API數據庫
python操做Memcached使用Python-memcached模塊 下載安裝:https://pypi.python.org/pypi/python-memcached
一、第一次操做json
import memcache mc = memcache.Client(['127.0.0.1:11210'], debug=True) mc.set("foo", "bar") ret = mc.get('foo') print ret
Ps:debug = True 表示運行出現錯誤時,現實錯誤信息,上線後移除該參數。windows
二、天生支持集羣
python-memcached模塊原生支持集羣操做,其原理是在內存維護一個主機列表,且集羣中主機的權重值和主機在列表中重複出現的次數成正比
主機 權重 1.1.1.1 1 1.1.1.2 2 1.1.1.3 1 那麼在內存中主機列表爲: host_list = ["1.1.1.1", "1.1.1.2", "1.1.1.2", "1.1.1.3", ]
若是用戶根據若是要在內存中建立一個鍵值對(如:k1 = "v1"),那麼要執行一下步驟:(分佈式計算)
根據算法將 k1 轉換成一個數字
將數字和主機列表長度求餘數,獲得一個值 N( 0 <= N < 列表長度 )
在主機列表中根據 第2步獲得的值爲索引獲取主機,例如:host_list[N]
鏈接 將第3步中獲取的主機,將 k1 = "v1" 放置在該服務器的內存中
代碼實現以下:
mc = memcache.Client([('1.1.1.1:12000', 1), ('1.1.1.2:12000', 2), ('1.1.1.3:12000', 1)], debug=True) mc.set('k1', 'v1')
集羣是個物理形態,分佈式是個工做方式。
分佈式是指將不一樣的業務分佈在不一樣的地方。 而集羣指的是將幾臺服務器集中在一塊兒,實現同一業務。
分佈式是以縮短單個任務的執行時間來提高效率的,而集羣則是經過提升單位時間內執行的任務數來提高效率。
若是一個任務由10個子任務組成,每一個子任務單獨執行需1小時,則在一臺服務器上執行該任務需10小時。
採用分佈式方案,提供10臺服務器,每臺服務器只負責處理一個子任務,不考慮子任務間的依賴關係,執行完這個任務只需一個小時。(這種工做模式的一個典型表明就是Hadoop的Map/Reduce分佈式計算模型)
高可用: 每個機器,作了一個備份
三、add
添加一條鍵值對,若是已經存在的 key,重複執行add操做異常
import memcache mc = memcache.Client(['10.211.55.4:12000'], debug=True) mc.add('k1', 'v1') # mc.add('k1', 'v2') # 報錯,對已經存在的key重複添加,失敗!!!
四、replace
replace 修改某個key的值,若是key不存在,則異常
mc = memcache.Client(['10.211.55.4:12000'], debug=True) # 若是memcache中存在kkkk,則替換成功,不然一場 mc.replace('kkkk','999')
五、set 和 set_multi
set 設置一個鍵值對,若是key不存在,則建立,若是key存在,則修改
set_multi 設置多個鍵值對,若是key不存在,則建立,若是key存在,則修改
import memcache mc = memcache.Client(['10.211.55.4:12000'], debug=True) mc.set('key0', 'alex') mc.set('key0', 'abcd' ,5) #存在5秒 mc.set_multi({'key1': 'val1', 'key2': 'val2'})
六、delete 和 delete_multi
delete 在Memcached中刪除指定的一個鍵值對
delete_multi 在Memcached中刪除指定的多個鍵值對
import memcache mc = memcache.Client(['10.211.55.4:12000'], debug=True) mc.delete('key0') mc.delete_multi(['key1', 'key2'])
七、get 和 get_multi
get 獲取一個鍵值對
get_multi 獲取多一個鍵值對
import memcache mc = memcache.Client(['10.211.55.4:12000'], debug=True) val = mc.get('key0') item_dict = mc.get_multi(["key1", "key2", "key3"])
八、append 和 prepend
append 修改指定key的值,在該值 後面 追加內容
prepend 修改指定key的值,在該值 前面 插入內容
import memcache mc = memcache.Client(['10.211.55.4:12000'], debug=True) # k1 = "v1" mc.append('k1', 'after') # k1 = "v1after" mc.prepend('k1', 'before') # k1 = "beforev1after"
九、incr 和 decr
incr 自增,將Memcached中的某一個值增長 N ( N默認爲1 )
decr 自減,將Memcached中的某一個值減小 N ( N默認爲1 )
import memcache mc = memcache.Client(['10.211.55.4:12000'], debug=True) mc.set('k1', '777') mc.incr('k1') # k1 = 778 mc.incr('k1', 10) # k1 = 788 mc.decr('k1') # k1 = 787 mc.decr('k1', 10) # k1 = 777
十、gets 和 cas
如商城商品剩餘個數,假設改值保存在memcache中,product_count = 900
A用戶刷新頁面從memcache中讀取到product_count = 900
B用戶刷新頁面從memcache中讀取到product_count = 900
若是A、B用戶均購買商品
A用戶修改商品剩餘個數 product_count=899
B用戶修改商品剩餘個數 product_count=899
如此一來緩存內的數據便不在正確,兩個用戶購買商品後,商品剩餘仍是 899
若是使用python的set和get來操做以上過程,那麼程序就會如上述所示狀況!
若是想要避免此狀況的發生,只要使用 gets 和 cas 便可,如: ( 鏈接時添加 cache_cas=True )
import memcache mc = memcache.Client(['10.211.55.4:12000'], debug=True, cache_cas=True) v = mc.gets('product_count') # ... # 若是有人在gets以後和cas以前修改了product_count,那麼,下面的設置將會執行失敗,剖出異常,從而避免非正常數據的產生 mc.cas('product_count', "899")
Ps:本質上每次執行gets時,會從memcache中獲取一個自增的數字,經過cas去修改gets的值時,會攜帶以前獲取的自增值和memcache中的自增值進行比較,若是相等,則能夠提交,若是不想等,那表示在gets和cas執行之間,又有其餘人執行了gets(獲取了緩衝的指定值), 如此一來有可能出現非正常數據,則不容許修改。
redis是一個key-value存儲系統。和Memcached相似,它支持存儲的value類型相對更多,包括string(字符串)、list(鏈表)、set(集合)、zset(sorted set --有序集合)和hash(哈希類型)。這些數據類型都支持push/pop、add/remove及取交集並集和差集及更豐富的操做,並且這些操做都是原子性的。在此基礎上,redis支持各類不一樣方式的排序。與memcached同樣,爲了保證效率,數據都是緩存在內存中。區別的是redis會週期性的把更新的數據寫入磁盤或者把修改操做寫入追加的記錄文件,而且在此基礎上實現了master-slave(主從)同步。
1、Redis安裝和基本使用
windows:
下載地址: https://github.com/MSOpenTech/redis/releases 包含文件: redis-benchmark.exe #基準測試 redis-check-aof.exe # aof redis-check-dump.exe # dump redis-cli.exe # 客戶端 redis-server.exe # 服務器 redis.windows.conf # 配置文件
啓動腳本:
redis-server redis.windows.conf
而後可使用自帶的客戶端工具進行測試。
雙擊打開 redis-cli.exe , 若是不報錯,則鏈接上了本地服務器,而後測試,好比 set命令,get命令
若是須要幫助,能夠在 cli窗口中輸入 help查看,例如:
啓動腳本報錯:修改 redis.windows.conf
....... # # maxheap <bytes> maxheap 1024000000 .......
安裝/卸載:
redis-server.exe --service-install redis.windows.conf --loglevel verbose redis-server.exe --service-uninstall
Linux:
wget http://download.redis.io/releases/redis-3.0.6.tar.gz tar xzf redis-3.0.6.tar.gz cd redis-3.0.6 make
啓動服務端
src/redis-server
啓動客戶端
src/redis-cli redis> set foo bar OK redis> get foo "bar"
2、Python操做Redis
sudo pip install redis or sudo easy_install redis or 源碼安裝 詳見:https://github.com/WoLpH/redis-py
API使用
redis-py 的API的使用能夠分類爲:
鏈接方式
鏈接池
操做管道
發佈訂閱
一、操做模式
redis-py提供兩個類Redis和StrictRedis用於實現Redis的命令,StrictRedis用於實現大部分官方的命令,並使用官方的語法和命令,Redis是StrictRedis的子類,用於向後兼容舊版本的redis-py。
import redis r = redis.Redis(host='10.211.55.4', port=6379) r.set('foo', 'Bar') ret = r.get('foo') print(ret)
二、鏈接池
redis-py使用connection pool來管理對一個redis server的全部鏈接,避免每次創建、釋放鏈接的開銷。默認,每一個Redis實例都會維護一個本身的鏈接池。能夠直接創建一個鏈接池,而後做爲參數Redis,這樣就能夠實現多個Redis實例共享一個鏈接池。
import redis pool = redis.ConnectionPool(host='10.211.55.4', port=6379) r = redis.Redis(connection_pool=pool) r.set('foo', 'Bar') ret = r.get('foo') print(ret)
三、操做
String操做,redis中的String在在內存中按照一個name對應一個value來存儲。如圖:
set(name, value, ex=None, px=None, nx=False, xx=False)
在Redis中設置值,默認,不存在則建立,存在則修改 參數: ex,過時時間(秒) px,過時時間(毫秒) nx,若是設置爲True,則只有name不存在時,當前set操做才執行 xx,若是設置爲True,則只有name存在時,崗前set操做才執行
setnx(name, value)
設置值,只有name不存在時,執行設置操做(添加)
setex(name, value, time)
# 設置值 # 參數: # time,過時時間(數字秒 或 timedelta對象)
psetex(name, time_ms, value)
# 設置值 # 參數: # time_ms,過時時間(數字毫秒 或 timedelta對象)
mset(*args, **kwargs)
批量設置值 如: mset(k1='v1', k2='v2') 或 mget({'k1': 'v1', 'k2': 'v2'})
get(name)
獲取值
mget(keys, *args)
批量獲取 如: mget('ylr', 'alex') 或 r.mget(['ylr', 'alex'])
getset(name, value)
設置新值並獲取原來的值 old = r.getset('bar','foo2') #foo1
getrange(key, start, end)
# 獲取子序列(根據字節獲取,非字符) # 參數: # name,Redis 的 name # start,起始位置(字節) # end,結束位置(字節) # 如: "小明" ,0-3表示 "小"
setrange(name, offset, value)
# 修改字符串內容,從指定字符串索引開始向後替換(新值太長時,則向後添加) # 參數: # offset,字符串的索引,字節(一個漢字三個字節) # value,要設置的值
setbit(name, offset, value)
# 對name對應值的二進制表示的位進行操做 # 參數: # name,redis的name # offset,位的索引(將值變換成二進制後再進行索引) # value,值只能是 1 或 0 # 注:若是在Redis中有一個對應: n1 = "foo", 那麼字符串foo的二進制表示爲:01100110 01101111 01101111 因此,若是執行 setbit('n1', 7, 1),則就會將第7位設置爲1, 那麼最終二進制則變成 01100111 01101111 01101111,即:"goo" # 擴展,轉換二進制表示: # source = "李小明" source = "foo" for i in source: num = ord(i) print(bin(num).replace('b','')) 特別的,若是source是漢字 "李小明"怎麼辦? 答:對於utf-8,每個漢字佔 3 個字節,那麼 "李小明" 則有 9個字節 對於漢字,for循環時候會按照 字節 迭代,那麼在迭代時,將每個字節轉換 十進制數,而後再將十進制數轉換成二進制 11100110 10101101 10100110 11100110 10110010 10011011 11101001 10111101 10010000 -------------------------- ----------------------------- ----------------------------- 李 小 明
getbit(name, offset)
# 獲取name對應的值的二進制表示中的某位的值 (0或1)
bitcount(key, start=None, end=None)
# 獲取name對應的值的二進制表示中 1 的個數 # 參數: # key,Redis的name # start,位起始位置 # end,位結束位置
bitop(operation, dest, *keys)
# 獲取多個值,並將值作位運算,將最後的結果保存至新的name對應的值 # 參數: # operation,AND(並) 、 OR(或) 、 NOT(非) 、 XOR(異或) # dest, 新的Redis的name # *keys,要查找的Redis的name # 如: bitop("AND", 'new_name', 'n1', 'n2', 'n3') # 獲取Redis中n1,n2,n3對應的值,而後講全部的值作位運算(求並集),而後將結果保存 new_name 對應的值中
strlen(name)
# 返回name對應值的字節長度(一個漢字3個字節)
incr(self, name, amount=1)
# 自增 name對應的值,當name不存在時,則建立name=amount,不然,則自增。 # 參數: # name,Redis的name # amount,自增數(必須是整數) # 注:同incrby
incrbyfloat(self, name, amount=1.0)
# 自增 name對應的值,當name不存在時,則建立name=amount,不然,則自增。 # 參數: # name,Redis的name # amount,自增數(浮點型)
decr(self, name, amount=1)
# 自減 name對應的值,當name不存在時,則建立name=amount,不然,則自減。 # 參數: # name,Redis的name # amount,自減數(整數)
append(key, value)
# 在redis name對應的值後面追加內容 # 參數: key, redis的name value, 要追加的字符串
Hash操做,redis中Hash在內存中的存儲格式以下圖:
hset(name, key, value)
# name對應的hash中設置一個鍵值對(不存在,則建立;不然,修改) # 參數: # name,redis的name # key,name對應的hash中的key # value,name對應的hash中的value # 注: # hsetnx(name, key, value),當name對應的hash中不存在當前key時則建立(至關於添加)
hmset(name, mapping)
# 在name對應的hash中批量設置鍵值對 # 參數: # name,redis的name # mapping,字典,如:{'k1':'v1', 'k2': 'v2'} # 如: # r.hmset('xx', {'k1':'v1', 'k2': 'v2'})
hget(name,key)
# 在name對應的hash中獲取根據key獲取value
hmget(name, keys, *args)
# 在name對應的hash中獲取多個key的值 # 參數: # name,reids對應的name # keys,要獲取key集合,如:['k1', 'k2', 'k3'] # *args,要獲取的key,如:k1,k2,k3 # 如: # r.mget('xx', ['k1', 'k2']) # 或 # print r.hmget('xx', 'k1', 'k2')
hgetall(name)
# 獲取name對應hash的全部鍵值
hlen(name)
# 獲取name對應的hash中鍵值對的個數
hkeys(name)
# 獲取name對應的hash中全部的key的值
hvals(name)
# 獲取name對應的hash中全部的value的值
hexists(name, key)
# 檢查name對應的hash是否存在當前傳入的key
hdel(name,*keys)
# 將name對應的hash中指定key的鍵值對刪除
hincrby(name, key, amount=1)
# 自增name對應的hash中的指定key的值,不存在則建立key=amount # 參數: # name,redis中的name # key, hash對應的key # amount,自增數(整數)
hincrbyfloat(name, key, amount=1.0)
# 自增name對應的hash中的指定key的值,不存在則建立key=amount # 參數: # name,redis中的name # key, hash對應的key # amount,自增數(浮點數) # 自增name對應的hash中的指定key的值,不存在則建立key=amount
hscan(name, cursor=0, match=None, count=None)
# 增量式迭代獲取,對於數據大的數據很是有用,hscan能夠實現分片的獲取數據,並不是一次性將數據所有獲取完,從而放置內存被撐爆 # 參數: # name,redis的name # cursor,遊標(基於遊標分批取獲取數據) # match,匹配指定key,默認None 表示全部的key # count,每次分片最少獲取個數,默認None表示採用Redis的默認分片個數 # 如: # 第一次:cursor1, data1 = r.hscan('xx', cursor=0, match=None, count=None) # 第二次:cursor2, data1 = r.hscan('xx', cursor=cursor1, match=None, count=None) # ... # 直到返回值cursor的值爲0時,表示數據已經經過分片獲取完畢
hscan_iter(name, match=None, count=None)
# 利用yield封裝hscan建立生成器,實現分批去redis中獲取數據 # 參數: # match,匹配指定key,默認None 表示全部的key # count,每次分片最少獲取個數,默認None表示採用Redis的默認分片個數 # 如: # for item in r.hscan_iter('xx'): # print item
List操做,redis中的List在在內存中按照一個name對應一個List來存儲。如圖:
lpush(name,values)
# 在name對應的list中添加元素,每一個新的元素都添加到列表的最左邊 # 如: # r.lpush('oo', 11,22,33) # 保存順序爲: 33,22,11 # 擴展: # rpush(name, values) 表示從右向左操做
lpushx(name,value)
# 在name對應的list中添加元素,只有name已經存在時,值添加到列表的最左邊 # 更多: # rpushx(name, value) 表示從右向左操做
llen(name)
# name對應的list元素的個數
linsert(name, where, refvalue, value))
# 在name對應的列表的某一個值前或後插入一個新值 # 參數: # name,redis的name # where,BEFORE或AFTER # refvalue,標杆值,即:在它先後插入數據 # value,要插入的數據
r.lset(name, index, value)
# 對name對應的list中的某一個索引位置從新賦值 # 參數: # name,redis的name # index,list的索引位置 # value,要設置的值
r.lrem(name, value, num)
# 在name對應的list中刪除指定的值 # 參數: # name,redis的name # value,要刪除的值 # num, num=0,刪除列表中全部的指定值; # num=2,從前到後,刪除2個; # num=-2,從後向前,刪除2個
lpop(name)
# 在name對應的列表的左側獲取第一個元素並在列表中移除,返回值則是第一個元素 # 更多: # rpop(name) 表示從右向左操做
lindex(name, index)
# 在name對應的列表中根據索引獲取列表元素
lrange(name, start, end)
# 在name對應的列表分片獲取數據 # 參數: # name,redis的name # start,索引的起始位置 # end,索引結束位置
ltrim(name, start, end)
# 在name對應的列表中移除沒有在start-end索引之間的值 # 參數: # name,redis的name # start,索引的起始位置 # end,索引結束位置
rpoplpush(src, dst)
# 從一個列表取出最右邊的元素,同時將其添加至另外一個列表的最左邊 # 參數: # src,要取數據的列表的name # dst,要添加數據的列表的name
blpop(keys, timeout)
# 將多個列表排列,按照從左到右去pop對應列表的元素 # 參數: # keys,redis的name的集合 # timeout,超時時間,當元素全部列表的元素獲取完以後,阻塞等待列表內有數據的時間(秒), 0 表示永遠阻塞 # 更多: # r.brpop(keys, timeout),從右向左獲取數據
brpoplpush(src, dst, timeout=0)
# 從一個列表的右側移除一個元素並將其添加到另外一個列表的左側 # 參數: # src,取出並要移除元素的列表對應的name # dst,要插入元素的列表對應的name # timeout,當src對應的列表中沒有數據時,阻塞等待其有數據的超時時間(秒),0 表示永遠阻塞
自定義增量迭代
# 因爲redis類庫中沒有提供對列表元素的增量迭代,若是想要循環name對應的列表的全部元素,那麼就須要: # 一、獲取name對應的全部列表 # 二、循環列表 # 可是,若是列表很是大,那麼就有可能在第一步時就將程序的內容撐爆,全部有必要自定義一個增量迭代的功能: def list_iter(name): """ 自定義redis列表增量迭代 :param name: redis中的name,即:迭代name對應的列表 :return: yield 返回 列表元素 """ list_count = r.llen(name) for index in range(list_count): yield r.lindex(name, index) # 使用 for item in list_iter('pp'): print(item)
Set操做,Set集合就是不容許重複的列表
sadd(name,values)
# name對應的集合中添加元素
scard(name)
# 獲取name對應的集合中元素個數
sdiff(keys, *args)
# 在第一個name對應的集合中且不在其餘name對應的集合的元素集合
sdiffstore(dest, keys, *args)
# 獲取第一個name對應的集合中且不在其餘name對應的集合,再將其新加入到dest對應的集合中
sinter(keys, *args)
# 獲取多個name對應集合的並集
sinterstore(dest, keys, *args)
# 獲取多個name對應集合的並集,再講其加入到dest對應的集合中
sismember(name, value)
# 檢查value是不是name對應的集合的成員
smembers(name)
# 獲取name對應的集合的全部成員
smove(src, dst, value)
# 將某個成員從一個集合中移動到另一個集合
spop(name)
# 從集合的右側(尾部)移除一個成員,並將其返回
srandmember(name, numbers)
# 從name對應的集合中隨機獲取 numbers 個元素
srem(name, values)
# 在name對應的集合中刪除某些值
sunion(keys, *args)
# 獲取多一個name對應的集合的並集
sunionstore(dest,keys, *args)
# 獲取多一個name對應的集合的並集,並將結果保存到dest對應的集合中
sscan(name, cursor=0, match=None, count=None)
sscan_iter(name, match=None, count=None)
# 同字符串的操做,用於增量迭代分批獲取元素,避免內存消耗太大
有序集合,在集合的基礎上,爲每元素排序;元素的排序須要根據另一個值來進行比較,因此,對於有序集合,每個元素有兩個值,即:值和分數,分數專門用來作排序。
zadd(name, *args, **kwargs)
# 在name對應的有序集合中添加元素 # 如: # zadd('zz', 'n1', 1, 'n2', 2) # 或 # zadd('zz', n1=11, n2=22)
zcard(name)
# 獲取name對應的有序集合元素的數量
zcount(name, min, max)
# 獲取name對應的有序集合中分數 在 [min,max] 之間的個數
zincrby(name, value, amount)
# 自增name對應的有序集合的 name 對應的分數
r.zrange( name, start, end, desc=False, withscores=False, score_cast_func=float)
# 按照索引範圍獲取name對應的有序集合的元素 # 參數: # name,redis的name # start,有序集合索引發始位置(非分數) # end,有序集合索引結束位置(非分數) # desc,排序規則,默認按照分數從小到大排序 # withscores,是否獲取元素的分數,默認只獲取元素的值 # score_cast_func,對分數進行數據轉換的函數 # 更多: # 從大到小排序 # zrevrange(name, start, end, withscores=False, score_cast_func=float) # 按照分數範圍獲取name對應的有序集合的元素 # zrangebyscore(name, min, max, start=None, num=None, withscores=False, score_cast_func=float) # 從大到小排序 # zrevrangebyscore(name, max, min, start=None, num=None, withscores=False, score_cast_func=float)
zrank(name, value)
# 獲取某個值在 name對應的有序集合中的排行(從 0 開始) # 更多: # zrevrank(name, value),從大到小排序
zrangebylex(name, min, max, start=None, num=None)
# 當有序集合的全部成員都具備相同的分值時,有序集合的元素會根據成員的 值 (lexicographical ordering)來進行排序,而這個命令則能夠返回給定的有序集合鍵 key 中, 元素的值介於 min 和 max 之間的成員 # 對集合中的每一個成員進行逐個字節的對比(byte-by-byte compare), 並按照從低到高的順序, 返回排序後的集合成員。 若是兩個字符串有一部份內容是相同的話, 那麼命令會認爲較長的字符串比較短的字符串要大 # 參數: # name,redis的name # min,左區間(值)。 + 表示正無限; - 表示負無限; ( 表示開區間; [ 則表示閉區間 # min,右區間(值) # start,對結果進行分片處理,索引位置 # num,對結果進行分片處理,索引後面的num個元素 # 如: # ZADD myzset 0 aa 0 ba 0 ca 0 da 0 ea 0 fa 0 ga # r.zrangebylex('myzset', "-", "[ca") 結果爲:['aa', 'ba', 'ca'] # 更多: # 從大到小排序 # zrevrangebylex(name, max, min, start=None, num=None)
zrem(name, values)
# 刪除name對應的有序集合中值是values的成員 # 如:zrem('zz', ['s1', 's2'])
zremrangebyrank(name, min, max)
# 根據排行範圍刪除
zremrangebyscore(name, min, max)
# 根據分數範圍刪除
zremrangebylex(name, min, max)
# 根據值返回刪除
zscore(name, value)
# 獲取name對應有序集合中 value 對應的分數
zinterstore(dest, keys, aggregate=None)
# 獲取兩個有序集合的交集,若是遇到相同值不一樣分數,則按照aggregate進行操做 # aggregate的值爲: SUM MIN MAX
zunionstore(dest, keys, aggregate=None)
# 獲取兩個有序集合的並集,若是遇到相同值不一樣分數,則按照aggregate進行操做 # aggregate的值爲: SUM MIN MAX
zscan(name, cursor=0, match=None, count=None, score_cast_func=float)
zscan_iter(name, match=None, count=None,score_cast_func=float)
# 同字符串類似,相較於字符串新增score_cast_func,用來對分數進行操做
其餘經常使用操做
delete(*names)
# 根據刪除redis中的任意數據類型
exists(name)
# 檢測redis的name是否存在
keys(pattern='*')
# 根據模型獲取redis的name # 更多: # KEYS * 匹配數據庫中全部 key 。 # KEYS h?llo 匹配 hello , hallo 和 hxllo 等。 # KEYS h*llo 匹配 hllo 和 heeeeello 等。 # KEYS h[ae]llo 匹配 hello 和 hallo ,但不匹配 hillo
expire(name ,time)
# 爲某個redis的某個name設置超時時間
rename(src, dst)
# 對redis的name重命名爲
move(name, db))
# 將redis的某個值移動到指定的db下
randomkey()
# 隨機獲取一個redis的name(不刪除)
type(name)
# 獲取name對應值的類型
scan(cursor=0, match=None, count=None)
scan_iter(match=None, count=None)
# 同字符串操做,用於增量迭代獲取key
四、管道
redis-py默認在執行每次請求都會建立(鏈接池申請鏈接)和斷開(歸還鏈接池)一次鏈接操做,若是想要在一次請求中指定多個命令,則可使用pipline實現一次請求指定多個命令,而且默認狀況下一次pipline 是原子性操做。
import redis pool = redis.ConnectionPool(host='10.211.55.4', port=6379) r = redis.Redis(connection_pool=pool) # pipe = r.pipeline(transaction=False) pipe = r.pipeline(transaction=True) pipe.set('name', 'alex') pipe.set('role', 'sb') pipe.execute()
五、發佈訂閱
發佈者:服務器
訂閱者:Dashboad和數據處理
發佈者:
import redis r = redis.Redis(host='127.0.0.1',port=6379) r.publish('fm998','666')
訂閱者:
import redis r = redis.Redis(host='127.0.0.1',port=6379) pub = r.pubsub() pub.subscribe('fm999') while True: msg = pub.parse_response() print(msg)
更多參見:https://github.com/andymccurdy/redis-py/
http://doc.redisfans.com/
1.修改了一處Tornado源碼:
self.write() 下:
def write(self, chunk): """Writes the given chunk to the output buffer. To write the output to the network, use the flush() method below. If the given chunk is a dictionary, we write it as JSON and set the Content-Type of the response to be ``application/json``. (if you want to send JSON as a different ``Content-Type``, call set_header *after* calling write()). Note that lists are not converted to JSON because of a potential cross-site security vulnerability. All JSON output should be wrapped in a dictionary. More details at http://haacked.com/archive/2009/06/25/json-hijacking.aspx/ and https://github.com/facebook/tornado/issues/1009 """ if self._finished: raise RuntimeError("Cannot write() after finish()") if not isinstance(chunk, (bytes, unicode_type, dict)): message = "write() only accepts bytes, unicode, and dict objects" if isinstance(chunk, list): message += ". Lists not accepted for security reasons; see http://www.tornadoweb.org/en/stable/web.html#tornado.web.RequestHandler.write" raise TypeError(message) if isinstance(chunk, dict): chunk = escape.json_encode(chunk) self.set_header("Content-Type", "application/json; charset=UTF-8") #************************************ # 修改了源碼:! ( 多添加了此處代碼 ) self._response_html = chunk # ************************************ chunk = utf8(chunk) self._write_buffer.append(chunk)
2.調用:
pool = redis.ConnectionPool(host='127.0.0.1', port=6379) r = redis.Redis(connection_pool=pool) def useredis(func): def inner(self,*args,**kwargs): ret = r.get('index') if ret: self.write(ret) return func(self,*args,**kwargs) r.set('index',self._response_html,ex=10) return inner class HomeHandler(BaseHandler): @useredis def get(self, page): pass
數據訪問層: (DAL/DAO)
--訪問數據庫
標準是:(每個表對應一個類)
業務處理層: (涉及表操做,)禁止訪問數據庫 (BLL/Sevice)
--檢查用戶是否已經存在
--註冊
ui表示層 (UI/UI)
M
V
C 請求來了,拿到數據 form表單驗證,輸入格式 (controller 訪問業務層,再去訪問數據層)