收藏些圖像處理,機器學習,深度學習方面比較不錯的文章,時常學習,複習和膜拜吧。。。html
圖像方面(傳統CV):python
1. SIFT特徵git
http://www.javashuo.com/article/p-tsfbxcyw-bu.htmlgithub
http://shartoo.github.io/SIFT-feature/?FbmNv=5d9f3d0c8ca5090aweb
http://www.javashuo.com/article/p-vbbvzyua-p.html算法
2. HOG特徵shell
http://shartoo.github.io/HOG-feature/?FbmNv=5d9f3d48e0647071api
https://senitco.github.io/2017/06/10/image-feature-hog/網絡
http://www.javashuo.com/article/p-cqhorrko-cg.htmlsession
https://zhuanlan.zhihu.com/p/40960756
3. 圖像金字塔
http://shartoo.github.io/image-pramid/?FbmNv=5d9f3d6e990e41bb
https://zhuanlan.zhihu.com/p/32815143
4. Haar特徵
http://shartoo.github.io/img-haar-feature/
https://senitco.github.io/2017/06/15/image-feature-haar/
https://juejin.im/post/5b0e6f83f265da0910791a38
http://www.javashuo.com/article/p-ztcyonsl-nd.html
5.Harris角點
https://www.cnblogs.com/ronny/p/4009425.html
https://senitco.github.io/2017/06/18/image-feature-harris/
https://zhuanlan.zhihu.com/p/42490675
https://zhuanlan.zhihu.com/p/36382429
機器學習方面:
1. Linear Regression
https://zhuanlan.zhihu.com/p/45023349
2. Logistic Regression
https://chenrudan.github.io/blog/2016/01/09/logisticregression.html
https://www.jiqizhixin.com/articles/2018-05-13-3
https://zhuanlan.zhihu.com/p/28408516
3.Neutral Network
https://clyyuanzi.gitbooks.io/julymlnotes/content/dl_nn.html
http://www.javashuo.com/article/p-gwixiqzw-gw.html
神經網絡損失函數(loss function):
4. 迴歸和正則化(Regression and Regularization)
https://www.zhihu.com/question/20924039
https://zhuanlan.zhihu.com/p/29957294
線性迴歸,邏輯迴歸和神經網絡帶正則化的損失函數:
正則化項能減緩梯度的變化:
5. SVM(support vector machine)
拉格朗日乘子法
對偶問題:
KKT條件:
SVM原理:
https://www.jiqizhixin.com/articles/2018-10-17-20
https://www.cnblogs.com/leftnoteasy/archive/2011/05/02/basic-of-svm.html
https://wizardforcel.gitbooks.io/dm-algo-top10/content/svm-1.html
http://www.javashuo.com/article/p-fctewcoy-bo.html
支持向量機的表達式,拉格朗日函數,對偶問題和KKT條件:
軟間隔支持向量機的表達式,拉格朗日函數,對偶問題和KKT條件:
支持向量機非線性化的核函數:
SVM使用代碼(sklearn包):(線性svm,和採用核函數的非線性SVM)
SVM的python實現: https://blog.csdn.net/laobai1015/article/details/82763033
6. kmeans算法
https://www.csuldw.com/2015/06/03/2015-06-03-ml-algorithm-K-means/
http://www.javashuo.com/article/p-wunigchf-cs.html
k-Means++
https://zhuanlan.zhihu.com/p/32375430
kmeans和kmeans++ python代碼實現:
https://github.com/silence-cho/cv-learning/blob/master/week4/assignment.py
https://github.com/ViperBling/CV_Course/blob/master/Week5/K-Means%2B%2B/K-Means.py
7.KNN(k近鄰)算法
https://coolshell.cn/articles/8052.html
http://www.javashuo.com/article/p-ddgnkfbs-db.html
8.決策樹 (Decision tree)
https://www.csuldw.com/2015/05/08/2015-05-08-decision%20tree/
https://lotabout.me/2018/decision-tree/
https://blog.csdn.net/xbinworld/article/details/44660339
信息增益:
信息增益率:
基尼指數:
ID3(信息增益)和C4.5(信息增益率):https://zhuanlan.zhihu.com/p/26760551?utm_source=wechat_session&utm_medium=social&utm_oi=71873182302208
sklearn實現決策樹:https://www.v2ex.com/amp/t/544062
9.其餘算法
AdaBoost:
http://www.javashuo.com/article/p-aqhxqbdj-dn.html
http://www.javashuo.com/article/p-ubtcqosw-mv.html
LDA(隱式狄利克雷分佈): https://github.com/endymecy/spark-ml-source-analysis/blob/master/%E8%81%9A%E7%B1%BB/LDA/lda.md
樸素貝葉斯:https://www.cnblogs.com/leoo2sk/archive/2010/09/17/naive-bayesian-classifier.html
https://zhuanlan.zhihu.com/p/26262151
深度學習方面
1. overfit/underfit (過擬合和欠擬合)
https://zh.d2l.ai/chapter_deep-learning-basics/underfit-overfit.html
https://zhuanlan.zhihu.com/p/29707029
2. bias and variance (高誤差和高方差)
https://www.jianshu.com/p/a585d5506b1e
http://www.javashuo.com/article/p-brlexfzr-ec.html
http://nanshu.wang/post/2015-05-17/
http://www.voidcn.com/article/p-tqoebcaa-dq.html
3.卷積
反捲積(Deconv / Transposed Convolution / Fractionally strided conv):
https://www.zhihu.com/question/48279880?sort=created
https://www.zhihu.com/question/48279880/answer/838063090
4. Gradient vanishing and explosion (梯度消失和梯度爆炸)
http://www.javashuo.com/article/p-oyrovvyw-nm.html
https://codertw.com/%E7%A8%8B%E5%BC%8F%E8%AA%9E%E8%A8%80/583004/
https://zhuanlan.zhihu.com/p/51490163
5.Backward(反向傳播)
https://juejin.im/entry/5ac056dc6fb9a028de44d620
https://tigerneil.gitbooks.io/neural-networks-and-deep-learning-zh/content/chapter2.html
https://github.com/INTERMT/BP-Algorithm
https://jdhao.github.io/2016/01/19/back-propagation-in-mlp-explained/
圖像分割模型:
1. FCN
https://zhuanlan.zhihu.com/p/62839949
https://zh.gluon.ai/chapter_computer-vision/fcn.html
2.U-Net (E-Net)
http://www.javashuo.com/article/p-obrtkobb-mu.html
https://juejin.im/post/5d63eb7bf265da03e05b2065
https://zhuanlan.zhihu.com/p/31428783
https://zhuanlan.zhihu.com/p/57530767
3. E-Net
https://zhuanlan.zhihu.com/p/39430439
http://hellodfan.com/2018/01/02/%E8%AF%AD%E4%B9%89%E5%88%86%E5%89%B2%E8%AE%BA%E6%96%87-ENet/
https://zhuanlan.zhihu.com/p/31379024
4. Mask-RCNN
https://zhuanlan.zhihu.com/p/37998710
https://zhuanlan.zhihu.com/p/40538057
Image Style Transfer(圖像風格轉變):
Perceptual Loss: Perceptual Losses for Real-Time Style Transferand Super-Resolution
Feature mimicking: Mimicking Very Efficient Network for Object Detection
Model distillation: Distilling the Knowledge in a Neural Network
Image Enhancement (圖像加強):
Learning a Deep Single Image Contrast Enhancerfrom Multi-Exposure Images
A Generic Deep Architecture for Single Image Reflection Removaland Image Smoothing (反射移除)
深度學習框架
caffe教程:
https://blog.csdn.net/m0_38116269/article/details/88119001