List of mathematical abbreviationsphp
From Wikipedia, the free encyclopediahtml
數學縮寫列表express
維基百科,自由的百科全書api
This article is a listing of abbreviated names of mathematical functions, function-like operators and other mathematical terminology.閉包
這篇文章是一個數學函數,相似於函數的操做符和其餘的數學術語的縮寫名列表。dom
This list is limited to abbreviations of two or more letters. The capitalization of some of these abbreviations is not standardized – different authors use different capitalizations.curl
This list is incomplete; you can help by expanding it.ide
這個列表受限於兩個或更多字母的縮略語。其中,一些縮略語字母大寫並非標準的 - 不一樣的做者使用不一樣的大寫形式。函數
- AC – Axiom of Choice.[1] 選擇公理
- a.c. – absolutely continuous. 絕對連續的
- acrd – inverse chord function. 逆弦函數
- adj – adjugate of a matrix. 矩陣的伴隨矩陣
- a.e. – almost everywhere. 殆遍,幾乎到處
- Ai – Airy function. 艾裏函數
- AL – Action limit. 處置界限
- Alt – alternating group (Alt(n) is also written as An.) 交錯羣
- A.M. – arithmetic mean. 算數平均數
- arccos – inverse cosine function. 反餘弦函數
- arccosec – inverse cosecant function. (Also written as arccsc.) 反餘割函數
- arccot – inverse cotangent function. 反餘切函數
- arccsc – inverse cosecant function. (Also written as arccosec.) 反餘割函數
- arcexc – inverse excosecant function. (Also written as arcexcsc, arcexcosec.) 反外餘割函數
- arcexcosec – inverse excosecant function. (Also written as arcexcsc, arcexc.) 反外餘割函數
- arcexcsc – inverse excosecant function. (Also written as arcexcosec, arcexc.) 反外餘割函數
- arcexs – inverse exsecant function. (Also written as arcexsec.) 反外正割函數
- arcexsec – inverse exsecant function. (Also written as arcexs.) 反外正割函數
- arcosech – inverse hyperbolic cosecant function. (Also written as arcsch.) 反雙曲餘割函數
- arcosh – inverse hyperbolic cosine function. 反雙曲餘弦函數
- arcoth – inverse hyperbolic cotangent function. 反雙曲餘切函數
- arcsch – inverse hyperbolic cosecant function. (Also written as arcosech.) 反雙曲餘割函數
- arcsec – inverse secant function. 反正割函數
- arcsin – inverse sine function. 反正弦函數
- arctan – inverse tangent function. 反正切函數
- arctan2 – inverse tangent function with two arguments. (Also written as atan2.) 帶有2個參數的反正切函數
- arg – argument of a complex number.[2] 複數的參數
- arg max – argument of the maximum. 最大值時的參數
- arg min – argument of the minimum. 最小值時的參數
- arsech – inverse hyperbolic secant function. 反雙曲正割函數
- arsinh – inverse hyperbolic sine function. 反雙曲正弦函數
- artanh – inverse hyperbolic tangent function. 反雙曲正切函數
- a.s. – almost surely. 殆必,幾乎必然
- atan2 – inverse tangent function with two arguments. (Also written as arctan2.) 同 arctan2,帶有兩個參數的反正切函數
- A.P. – arithmetic progression. 等差數列
- Aut – automorphism group. 自同構羣
- bd – boundary. 邊界(拓撲學)
- Bi – Airy function of the second kind. 第二類艾裏函數
- Bias – bias of an estimator 估計器偏置
- Card – cardinality of a set.[3] (Card(X) is also written #X, ♯X or |X|.) 集合的勢
- cdf – cumulative distribution function. 累積分佈函數
- c.f. – cumulative frequency. 累積頻率
- char – characteristic of a ring. 環的特徵
- Chi – hyperbolic cosine integral function. 雙曲餘弦積分函數
- Ci – cosine integral function. 餘弦積分函數
- cis – cos + i sin function. 歐拉公式函數
- Cl – conjugacy class. 共軛類
- cl – topological closure. 拓撲學閉包
- cod, codom – codomain. 到達域
- cok, coker – cokernel. 上核,餘核
- Cor – corollary. 推論,餘定理
- corr – correlation. 相關
- cos – cosine function. 餘弦函數
- cosec – cosecant function. (Also written as csc.) 餘割函數
- cosech – hyperbolic cosecant function. (Also written as csch.) 雙曲餘割函數
- cosh – hyperbolic cosine function. 雙曲餘弦函數
- cosiv – coversine function. (Also written as cover, covers, cvs.) 餘矢函數
- cot – cotangent function. (Also written as ctg.) 餘切函數
- coth – hyperbolic cotangent function. 雙曲餘切函數
- cov – covariance of a pair of random variables. 協方差
- cover – coversine function. (Also written as covers, cvs, cosiv.) 餘矢函數
- covercos – covercosine function. (Also written as cvc.) 正矢函數
- covers – coversine function. (Also written as cover, cvs, cosiv.) 餘矢函數
- crd – chord function. 弦(幾何)函數
- csc – cosecant function. (Also written as cosec.) 餘割函數
- csch – hyperbolic cosecant function. (Also written as cosech.) 雙曲餘割函數
- ctg – cotangent function. (Also written as cot.) 餘切函數
- curl – curl of a vector field. (Also written as rot.) 向量場的旋度
- cvc – covercosine function. (Also written as covercos.) 余余矢函數
- cvs – coversine function. (Also written as cover, covers, cosiv.) 正餘矢函數
- def – define or definition. 定義
- deg – degree of a polynomial. (Also written as ∂.) 多項式的次數
- del – del, a differential operator. (Also written as .) 微分運算符
- det – determinant of a matrix or linear transformation. 矩陣或線性變換的行列式
- dim – dimension of a vector space. 向量空間的維度
- div – divergence of a vector field. 向量場的散度
- dkl – decalitre 公斗。公斗是一個容積單位,符號是daL。公斗自己不是國際單位制(SI)單位,而是接受與SI合併使用的非SI單位。1 公斗等於10 公升。
- DNE – a solution for an expression does not exist, or is undefined. Generally used with limits and integrals. 不存在,或未定義,一般用於極限和積分。
- dom – domain of a function.[1] (Or, more generally, a relation.) 函數的定義域
- End – categories of endomorphisms. 自同態範疇
- Ei – exponential integral function. 指數積分函數
- Eqn – equation. 方程
- erf – error function. 偏差函數
- erfc – complementary error function. 餘偏差函數(互補偏差函數)
- etr — exponent of the trace. 跡指數
- exc — excosecant function. (Also written as excsc, excosec.) 外餘割函數
- excosec — excosecant function. (Also written as excsc, exc.) 外餘割函數
- excsc — excosecant function. (Also written as excosec, exc.) 外餘割函數
- exs — exsecant function. (Also written as exsec.) 外正割函數
- exsec — exsecant function. (Also written as exs.) 外正割函數
- exp – exponential function. (exp x is also written as ex.) 指數函數
- expm1 – exponential minus 1 function. (Also written as exp1m.) 指數減1函數
- exp1m – exponential minus 1 function. (Also written as expm1.) 指數減1函數
- Ext – Ext functor. Ext 函子
- ext – exterior. 外部(拓撲學)
- FIP – finite intersection property. 有限交集性質
- FOL – first-order logic. 一階邏輯
- Frob – Frobenius endomorphism. 弗羅貝尼烏斯自同態
- Gal – Galois group. (Also written as Γ.) 伽羅瓦羣
- gcd – greatest common divisor of two numbers. (Also written as hcf.) 兩個數的最大公因數
- gd – Gudermannian function. 古德曼函數
- GF – Galois field. 伽羅瓦,即有限域(Finite field)
- GL – general linear group. 通常線性羣
- G.M. – geometric mean. 幾何平均數
- glb – greatest lower bound. (Also written as inf.) 最大下界
- G.P. – geometric progression. 等比數列
- grad – gradient of a function. 函數梯度
- hacover – hacoversine function. (Also written as hacovers, hcv.) 正半餘矢函數
- hacovercos – hacovercosine function. (Also written as hcc.) 餘半餘矢函數
- hacovers – hacoversine function. (Also written as hacover, hcv.) 正半餘矢函數
- hav – haversine function. (Also written as sem.) 正半正矢函數
- havercos – havercosine function. (Also written as hvc.) 餘半正矢函數
- hcc – hacovercosine function. (Also written as hacovercos.) 餘半餘矢函數
- hcv – hacoversine function. (Also written as hacover, hacovers.) 正半餘矢函數
- hcf – highest common factor of two numbers. (Also written as gcd.) 最大公因數
- H.M. – harmonic mean. 調和平均數
- HOL – higher-order logic. 高階邏輯
- Hom – Hom functor. Hom 函子
- hom – hom-class hom類
- hvc – havercosine function. (Also written as havercos.) 餘半正矢函數
- iff – if and only if. 當且僅當
- iid – independent and identically distributed random variables. 獨立同分布隨機變量
- Im – imaginary part of a complex number[2] (Also written as ).複數的虛部
- im – image 像(數學)
- inf – infimum of a set. (Also written as glb.) 集合的下确界
- int – interior. 內部(拓撲學)
- ker – kernel. 核(範疇論 Category theory)
- lb – binary logarithm (log2). (Also written as ld.) 以2爲底的對數
- lcm – lowest common multiple or least common multiple of two numbers. 兩個數的最小公倍數
- ld – binary logarithm (log2). (Also written as lb.) 以2爲底的對數
- lerp – linear interpolation.[4] 線性插值
- lg – common logarithm (log10) or binary logarithm (log2). 經常使用對數或以2爲底的對數
- LHS – left-hand side of an equation. 方程的左側
- Li – offset logarithmic integral function. 偏移對數積分函數
- li – logarithmic integral function or linearly independent. 對數積分函數或線性無關
- lim – limit of a sequence, or of a function. 數列極限或函數極限
- lim inf – limit inferior. 下極限
- lim sup – limit superior. 上極限
- ln – natural logarithm, loge. 天然對數
- lnp1 – natural logarithm plus 1 function. 天然對數加1極限
- ln1p – natural logarithm plus 1 function. 天然對數加1極限
- log – logarithm. (If without a subscript, this may mean either log10 or loge.) 對數
- logh – natural logarithm, loge.[5] 天然對數
- LST – language of set theory. 集合論語言
- lub – least upper bound.[1] (Also written sup.) 最小上界
- max – maximum of a set. 集合的最大值
- M.I. – mathematical induction. 數學概括法
- min – minimum of a set. 集合的最小值
- mod – modulo. 模數運算
- mtanh – modified hyperbolic tangent function. (Also written as mth.) 修改後的雙曲正切函數
- mth – modified hyperbolic tangent function. (Also written as mtanh.) 修改後的雙曲正切函數
- mx – matrix. 矩陣
- NAND – not-and in logic. 與非邏輯
- No. – number. 數
- NOR – not-or in logic. 或非邏輯
- NTS – need to show. 須要展現,須要展示
- ob – object class. 對象類
- ord – ordinal number of a well-ordered set.[3] 良序集的序數
- pdf – probability density function. 機率密度函數
- pf – proof. 證實
- PGL – projective general linear group. 射影通常線性羣
- pmf – probability mass function. 機率質量函數
- Pr – probability of an event. (See Probability theory. Also written as P or .) 事件機率
- PSL – projective special linear group. 射影特殊線性羣
- QED – "Quod erat demonstrandum", a Latin phrase used at the end of a definitive proof. 證實完畢,拉丁語,用在明確證實的結束處。
- QEF – "quod erat faciendum", a Latin phrase sometimes used at the end of a construction. 拉丁語,meaning "which had to be done",有時用在一次做圖的結尾,意思是這就是要作的。
- ran – range of a function. 函數的值域
- rank – rank. (Also written as rk.) 秩(線性代數)
- Re – real part of a complex number.[2] (Also written .) 複數的實數部分
- resp – respectively. 分別地,各自地
- RHS – right-hand side of an equation. 方程的右側
- rk – rank. (Also written as rank.) 秩(線性代數)
- RMS, rms – root mean square. 均方根
- rng – non-unital ring. 僞環pseudo-ring
- rot – rotor of a vector field. (Also written as curl.) 向量場的旋度
- RTP – required to prove. 須要證實
- RV – Random Variable. (or as R.V.) 隨機變量
- sec – secant function. 正割函數
- sech – hyperbolic secant function. 雙曲正割函數
- seg – initial segment of.[1] 初始線段,起始線段
- sem – haversine function. (Also written as hav.) 正半正矢函數
- SFIP – strong finite intersection property. 強有限交集性質
- sgn – signum function. 符號函數
- Shi – hyperbolic sine integral function. 雙曲正弦積分函數
- Si – sine integral function. 正弦積分函數
- sin – sine function. 正弦函數
- sinc – sinc function. sinc函數
- sinh – hyperbolic sine function. 雙曲正弦函數
- siv – versine function. (Also written as ver, vers.) 正矢函數
- SL – special linear group. 特殊線性組
- Soln – solution. 解答
- sp – linear span of a set of vectors. (Also written with angle brackets.) 一組向量的線性範圍
- Spec – spectrum of a ring. 環的譜
- s.t. – such that or so that. 以便
- st – standard part function. 標準局部函數
- STP – [it is] sufficient to prove. 足以證實
- sup – supremum of a set.[1] (Also written lub.) 上確界,最小上界
- supp – support of a function. 函數的支撐集
- Sym – symmetric group (Sym(n) is also written as Sn.) 對稱羣(n次對稱羣)
- tan – tangent function. (Also written as tgn, tg.) 正切函數
- tanh – hyperbolic tangent function. 雙曲正切函數
- TFAE – the following are equivalent. 如下是等價的
- tg – tangent function. (Also written as tan, tgn.) 正切函數
- tgn – tangent function. (Also written as tan, tg.) 正切函數
- Thm – theorem. 定理
- Tor – Tor functor. Tor 函子
- Tr – trace, either the field trace, or the trace of a matrix or linear transformation. 跡,或場跡,或矩陣或線性變換的跡
- undef – a function or expression is undefined 函數或表達式未定義
- var – variance of a random variable. 隨機變量的方差
- vcs – vercosine function. (Also written as vercos.) 餘矢函數
- ver – versine function. (Also written as vers, siv.) 正矢函數
- vercos – vercosine function. (Also written as vcs.) 餘矢函數
- vers – versine function. (Also written as ver, siv.) 正矢函數
- W^5 – which was what we wanted. Synonym of Q.E.D. 這就是咱們想要的,Q.E.D.的同義詞
- walog – without any loss of generality. 不失通常性
- wff – well-formed formula. 合式公式
- whp – with high probability. 很大機率地
- wlog – without loss of generality. 不失通常性
- WMA – we may assume. 咱們可能假設
- WO – well-ordered set.[1] 良序集
- wp1 - with probability 1. 以機率1
- wrt – with respect to or with regard to. 對
- WTP – want to prove. 想要證實
- WTS – want to show. 想要展現,想要展示
- XOR – exclusive or in logic. 異或邏輯
- ZF – Zermelo–Fraenkel axioms of set theory.[3] 集合論的策梅洛-弗蘭克爾公理
- ZFC – Zermelo–Fraenkel axioms (with the Axiom of Choice) of set theory.[3] 集合論的(含有選擇公理)策梅洛-弗蘭克爾公理
Referencesui
- Goldrei, Derek (1996). Classic Set Theory. London, UK: Chapman and Hall. pp. 283–287 (Index). ISBN 0-412-60610-0.
- Priestley, H. A. (2003). Introduction to Complex Analysis (2 ed.). Oxford University Press. p. 321 (Notation index) ISBN 978-0-19-852562-2.
- Hamilton, A. G. (1982). Numbers, sets and axioms. Cambridge University Press. pp. 249–251 (Index of symbols). ISBN 0-521-24509-5. Raymond, Eric S. (2003), "LERP", Jargon File, 4.4.7
- Jolley, L.B.W. (1961). Summation of Series (2 (revised) ed.). New York, USA: Dover Publications, Inc.LCCN 61-65274.
English Texts From https://en.wikipedia.org/wiki/List_of_mathematical_abbreviations