LMiC庫能夠經過一組API函數(API functions),運行時函數(run-time functions),回調函數(callback functions),和全局LMIC數據結構(global LMIC data structure) 四種方式來實現訪問。
LMiC庫提供了一個簡單的基於事件的編程模型,其中全部協議事件都是調度到應用程序的onEvent()回調函數;爲了釋放應用程序諸如定時或中斷等細節,該庫具備內置的運行時環境來處理定時器排隊和Job管理。全部協議事件都是經過回調onEvent()函數來實現的。
LMiC庫由兩個宏來定義編程
#define LMIC_VERSION_MAJOR 1 #define LMIC_VERSION_MINOR 5
LMIC庫外部協議接口定義都包含在lmic.h中,以供外部使用。api
#include 「lmic.h」
struct lmic_t { // Radio settings TX/RX (also accessed by HAL) ostime_t txend; ostime_t rxtime; u4_t freq; s1_t rssi; s1_t snr; rps_t rps; u1_t rxsyms; u1_t dndr; s1_t txpow; // dBm osjob_t osjob; // Channel scheduling #if defined(CFG_eu868) band_t bands[MAX_BANDS]; u4_t channelFreq[MAX_CHANNELS]; u2_t channelDrMap[MAX_CHANNELS]; u2_t channelMap; #elif defined(CFG_us915) u4_t xchFreq[MAX_XCHANNELS]; // extra channel frequencies (if device is behind a repeater) u2_t xchDrMap[MAX_XCHANNELS]; // extra channel datarate ranges ---XXX: ditto u2_t channelMap[(72+MAX_XCHANNELS+15)/16]; // enabled bits u2_t chRnd; // channel randomizer #endif u1_t txChnl; // channel for next TX u1_t globalDutyRate; // max rate: 1/2^k ostime_t globalDutyAvail; // time device can send again u4_t netid; // current network id (~0 - none) u2_t opmode; u1_t upRepeat; // configured up repeat s1_t adrTxPow; // ADR adjusted TX power u1_t datarate; // current data rate u1_t errcr; // error coding rate (used for TX only) u1_t rejoinCnt; // adjustment for rejoin datarate s2_t drift; // last measured drift s2_t lastDriftDiff; s2_t maxDriftDiff; u1_t pendTxPort; u1_t pendTxConf; // confirmed data u1_t pendTxLen; // +0x80 = confirmed u1_t pendTxData[MAX_LEN_PAYLOAD]; u2_t devNonce; // last generated nonce u1_t nwkKey[16]; // network session key u1_t artKey[16]; // application router session key devaddr_t devaddr; u4_t seqnoDn; // device level down stream seqno u4_t seqnoUp; u1_t dnConf; // dn frame confirm pending: LORA::FCT_ACK or 0 s1_t adrAckReq; // counter until we reset data rate (0=off) u1_t adrChanged; u1_t margin; bit_t ladrAns; // link adr adapt answer pending bit_t devsAns; // device status answer pending u1_t adrEnabled; u1_t moreData; // NWK has more data pending bit_t dutyCapAns; // have to ACK duty cycle settings u1_t snchAns; // answer set new channel // 2nd RX window (after up stream) u1_t dn2Dr; u4_t dn2Freq; u1_t dn2Ans; // 0=no answer pend, 0x80+ACKs // Class B state u1_t missedBcns; // unable to track last N beacons u1_t bcninfoTries; // how often to try (scan mode only) u1_t pingSetAns; // answer set cmd and ACK bits rxsched_t ping; // pingable setup // Public part of MAC state u1_t txCnt; u1_t txrxFlags; // transaction flags (TX-RX combo) u1_t dataBeg; // 0 or start of data (dataBeg-1 is port) u1_t dataLen; // 0 no data or zero length data, >0 byte count of data u1_t frame[MAX_LEN_FRAME]; u1_t bcnChnl; u1_t bcnRxsyms; // ostime_t bcnRxtime; bcninfo_t bcninfo; // Last received beacon info }; //! \var struct lmic_t LMIC //! The state of LMIC MAC layer is encapsulated in this variable. DECLARE_LMIC; //!< \internal
// purpose of receive window - lmic_t.rxState enum { RADIO_RST=0, RADIO_TX=1, RADIO_RX=2, RADIO_RXON=3 };
void os_radio (u1_t mode) { hal_disableIRQs(); switch (mode) { case RADIO_RST: opmode(OPMODE_SLEEP); // put radio to sleep break; case RADIO_TX: // transmit frame now starttx(); // buf=LMIC.frame, len=LMIC.dataLen break; case RADIO_RX: // receive frame now (exactly at rxtime) startrx(RXMODE_SINGLE); // buf=LMIC.frame, time=LMIC.rxtime, timeout=LMIC.rxsyms break; case RADIO_RXON:// start scanning for beacon now startrx(RXMODE_SCAN); // buf=LMIC.frame break; } hal_enableIRQs(); }
// Netid values / lmic_t.netid enum { NETID_NONE=(int)~0U, NETID_MASK=(int)0xFFFFFF };
// TX-RX transaction flags - report back to user enum { TXRX_ACK = 0x80, // confirmed UP frame was acked TXRX_NACK = 0x40, // confirmed UP frame was not acked TXRX_NOPORT = 0x20, // set if a frame with a port was RXed, clr if no frame/no port TXRX_PORT = 0x10, // set if a frame with a port was RXed, LMIC.frame[LMIC.dataBeg-1] => port TXRX_DNW1 = 0x01, // received in 1st DN slot TXRX_DNW2 = 0x02, // received in 2dn DN slot TXRX_PING = 0x04 }; // received in a scheduled RX slot
對於EV_RXCOMPLETE和EV_TXCOMPLETE事件,txrxFlags字段定義瞭如下標誌:
TXRX_ACK :上行確認幀被確認(與TXRX_NACK互斥)
TXRX_NACK:上行確認幀未被確認(與TXRX_ACK互斥)
TXRX_PORT:端口字段包含在接收幀中
TXRX_DNW1:在第一個下行接收窗口中接收(與TXRX_DNW2互斥)
TXRX_DNW2:在第二個下行接收窗口中接收(與TXRX_DNW1互斥)
TXRX_PING:在預約的RX Slot中接收(Beacon幀)數組
對於EV_TXCOMPLETE事件,這些字段具備如下值:
對於EV_RXCOMPLETE事件,這些字段具備如下值:
服務器
// MAC operation modes (lmic_t.opmode).網絡
enum { OP_NONE = 0x0000, OP_SCAN = 0x0001, // radio scan to find a beacon OP_TRACK = 0x0002, // track my networks beacon (netid) OP_JOINING = 0x0004, // device joining in progress (blocks other activities) OP_TXDATA = 0x0008, // TX user data (buffered in pendTxData) OP_POLL = 0x0010, // send empty UP frame to ACK confirmed DN/fetch more DN data OP_REJOIN = 0x0020, // occasionally send JOIN REQUEST OP_SHUTDOWN = 0x0040, // prevent MAC from doing anything OP_TXRXPEND = 0x0080, // TX/RX transaction pending OP_RNDTX = 0x0100, // prevent TX lining up after a beacon OP_PINGINI = 0x0200, // pingable is initialized and scheduling active OP_PINGABLE = 0x0400, // we're pingable OP_NEXTCHNL = 0x0800, // find a new channel OP_LINKDEAD = 0x1000, // link was reported as dead OP_TESTMODE = 0x2000, // developer test mode };
// Radio parameter set (encodes SF/BW/CR/IH/NOCRC) typedef u2_t rps_t; inline rps_t makeRps (sf_t sf, bw_t bw, cr_t cr, int ih, int nocrc) { return sf | (bw<<3) | (cr<<5) | (nocrc?(1<<7):0) | ((ih&0xFF)<<8); }
LMiC庫提供一組API函數來控制MAC狀態並觸發協議動做。
事件回調函數的事件類型由enum定義session
// Event types for event callback enum _ev_t { EV_SCAN_TIMEOUT=1, EV_BEACON_FOUND, EV_BEACON_MISSED, EV_BEACON_TRACKED, EV_JOINING, EV_JOINED, EV_RFU1, EV_JOIN_FAILED, EV_REJOIN_FAILED, EV_TXCOMPLETE, EV_LOST_TSYNC, EV_RESET, EV_RXCOMPLETE, EV_LINK_DEAD, EV_LINK_ALIVE };
重置MAC狀態。會話和掛起的數據傳輸將被丟棄。數據結構
當即開始加入網絡。若是沒有會話,將被其餘API函數隱含地調用已經創建了將生成事件EV_JOINING和EV_JOINED或EV_JOIN_FAILED。app
檢查是否能夠鏈接其餘網絡。假如沒有找到新的網絡當前網絡的會話將保留。將生成EV_JOINED或EV_REJOIN_FAILED事件。dom
設置靜態會話參數。替代經過加入網絡動態創建會話,能夠提供預計算的會話參數。恢復預先計算的會話參數,幀序列計數器(LMIC.seqnoUp和LMIC.seqnoDn)必須恢復爲他們的最新值。函數
建立具備指定發射功率和佔空比(1 / txcap)屬性的新頻段。
使用指定的頻率建立給定頻段的新信道,並容許數據速率在數據速率位掩碼(1 << DRx)中定義。
禁用指定的信道。
啓用/禁用數據速率適配。若是是移動設備應該關閉。
啓用/禁用連接檢查驗證。默認狀況下啓用鏈路檢查模式,並按期使用驗證網絡鏈接。僅當會話創建時才必須調用。
設置數據速率和傳輸功率。只有在禁用數據速率調整時才應使用。
在下一個可能的時間準備上行數據傳輸。假設pendTxData,pendTxLen,pendTxPort和pendTxConf已經設置好了。數據長度爲LMIC.pendTxLen,數組LMIC.pendTxData[]中的數據將被髮送到LMIC.pendTxPort端口。若是LMIC.pendTxConf使能,服務器將回復確認幀。當通訊完成後將生成EV_TXCOMPLETE事件,即數據發送完成而且收到最終下行數據或已收到確認幀。
在下一個可能的時間準備上行數據傳輸,方便功能LMIC_setTxData()。若是數據爲NULL,則將使用LMIC.pendTxData []中的數據。
刪除以前爲上行傳輸準備的數據。
啓用信標(beacon幀)跟蹤。對於LMIC.bcninfoTries=tryBcnInfo的值爲0表示開始當即掃描beacon幀;非零值指定試圖查詢服務器準確beacon幀到達時間的次數。查詢請求將在下一個上行幀內發送(不會另外生成幀)。若是沒有應答接收掃描將開始。第一個beacon幀將生成EV_BEACON_FOUND或EV_SCAN_TIMEOUT事件,隨後的beacon幀將生成EV_BEACON_TRACKED,EV_BEACON_MISSED或EV_LOST_TSYNC事件。
禁用beacon幀跟蹤。beacon幀將再也不被跟蹤,所以也將禁用ping
啓用ping和設置下行監聽間隔。 Ping將在下一個上行幀啓用(不會生成新幀)。監聽間隔爲2 ^ intvExp秒,intvExp(LMIC.ping.intvExp)的有效值是0-7。此API函數須要經過網絡服務器創建的有效會話LMIC_startJoining()或LMIC_setSession()函數(見2.2和2.4節)。若是beacon幀跟蹤還沒有啓用,掃描將當即開始。爲了不掃描,經過使用前一次調用非零參數的LMIC_enableTracking()能夠更有效地定位beacon幀。除了LMIC_enableTracking()提到的事件以外,每當在ping slot(ping時槽)中接收到下行數據時將生成EV_RXCOMPLETE事件。
中止監聽下行數據。按期偵聽被禁用,但beacon仍將被追蹤。爲了中止beacon跟蹤,beacon須要調用LMIC_disableTracking()。
儘快發送一個空的上行MAC幀。可能被用來表示信號活性或者要傳輸等待中的MAC選項,並打開接收窗口。
中止全部MAC活動。隨後,MAC須要經過調用LMIC_reset();若是有新的協議動做則須要從新發起。
void LMIC_init (void) { LMIC.opmode = OP_SHUTDOWN; }