本文首發於我的博客https://kezunlin.me/post/6580691f/,歡迎閱讀!html
compile opencv with CUDA support on windows 10java
requirements:python
see cuda compute capacitylinux
筆記本版本的顯卡和臺式機的計算能力是有差距的。git
for opencv functionsgithub
Get opencv 3.1.0 for git and fix some bugsweb
git clone https://github.com/opencv/opencv.git cd opencv git checkout -b v3.1.0 3.1.0 # fix bugs for 3.1.0 git cherry-pick 10896 git cherry-pick cdb9c git cherry-pick 24dbb git branch master * v3.1.0
mkdir build && cd build && cmake-gui ..
configure with VS 2015 win64
with options算法
BUILD_SHARED_LIBS ON CMAKE_CONFIGURATION_TYPES Release # Release CMAKE_CXX_FLAGS_RELEASE /MD /O2 /Ob2 /DNDEBUG /MP # for multiple processor WITH_VTK OFF BUILD_PERF_TESTS OFF # if ON, build errors occur WITH_CUDA ON CUDA_TOOLKIT_ROOT_DIR C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v8.0 #CUDA_ARCH_BIN 3.0 3.5 5.0 5.2 6.0 6.1 # very time-consuming CUDA_ARCH_PTX 3.0
for opencv
docker
CUDA_ARCH_BIN 3.0 3.5 5.0 5.2 6.0 6.1
relate withubuntu
-gencode;arch=compute_30,code=sm_30;-gencode;arch=compute_35,code=sm_35;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_52,code=sm_52;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_61,code=sm_61;
CUDA_ARCH_PTX 3.0
relate with
-gencode;arch=compute_30,code=compute_30;
for caffe
the
CUDA_ARCH_BIN
parameter specifies multiple architectures so as to support a variety of GPU boards. otherwise, cuda programs will not run with other type of GPU boards.
爲了支持在多個不一樣計算能力的GPU上運行可執行程序,opencv/caffe編譯過程當中須要支持多個不一樣架構,eg. CUDA_ARCH_BIN 3.0 3.5 5.0 5.2 6.0 6.1
, 所以編譯過程很是耗時。在編譯的而過程當中儘量選擇須要發佈release版本的GPU架構進行配置編譯。
configure and output:
Selecting Windows SDK version 10.0.14393.0 to target Windows 10.0.17134. found IPP (ICV version): 9.0.1 [9.0.1] at: C:/compile/opencv/3rdparty/ippicv/unpack/ippicv_win CUDA detected: 8.0 CUDA NVCC target flags: -gencode;arch=compute_30,code=sm_30;-gencode;arch=compute_30,code=compute_30 Could NOT find Doxygen (missing: DOXYGEN_EXECUTABLE) To enable PlantUML support, set PLANTUML_JAR environment variable or pass -DPLANTUML_JAR=<filepath> option to cmake Could NOT find PythonInterp: Found unsuitable version "1.4", but required is at least "3.4" (found C:/Users/zunli/.babun/cygwin/bin/python) Could NOT find PythonInterp: Found unsuitable version "1.4", but required is at least "3.2" (found C:/Users/zunli/.babun/cygwin/bin/python) Could NOT find Matlab (missing: MATLAB_MEX_SCRIPT MATLAB_INCLUDE_DIRS MATLAB_ROOT_DIR MATLAB_LIBRARIES MATLAB_LIBRARY_DIRS MATLAB_MEXEXT MATLAB_ARCH MATLAB_BIN) General configuration for OpenCV 3.1.0 ===================================== Version control: 3.1.0-3-g5e9beb8 Platform: Host: Windows 10.0.17134 AMD64 CMake: 3.10.0 CMake generator: Visual Studio 14 2015 Win64 CMake build tool: C:/Program Files (x86)/MSBuild/14.0/bin/MSBuild.exe MSVC: 1900 C/C++: Built as dynamic libs?: YES C++ Compiler: C:/Program Files (x86)/Microsoft Visual Studio 14.0/VC/bin/x86_amd64/cl.exe (ver 19.0.24215.1) C++ flags (Release): /DWIN32 /D_WINDOWS /W4 /GR /EHa /D _CRT_SECURE_NO_DEPRECATE /D _CRT_NONSTDC_NO_DEPRECATE /D _SCL_SECURE_NO_WARNINGS /Gy /bigobj /Oi /wd4251 /wd4324 /wd4275 /wd4589 /MP8 /MD /O2 /Ob2 /DNDEBUG /MP /Zi C++ flags (Debug): /DWIN32 /D_WINDOWS /W4 /GR /EHa /D _CRT_SECURE_NO_DEPRECATE /D _CRT_NONSTDC_NO_DEPRECATE /D _SCL_SECURE_NO_WARNINGS /Gy /bigobj /Oi /wd4251 /wd4324 /wd4275 /wd4589 /MP8 /MDd /Zi /Ob0 /Od /RTC1 C Compiler: C:/Program Files (x86)/Microsoft Visual Studio 14.0/VC/bin/x86_amd64/cl.exe C flags (Release): /DWIN32 /D_WINDOWS /W3 /D _CRT_SECURE_NO_DEPRECATE /D _CRT_NONSTDC_NO_DEPRECATE /D _SCL_SECURE_NO_WARNINGS /Gy /bigobj /Oi /MP8 /MD /O2 /Ob2 /DNDEBUG /Zi C flags (Debug): /DWIN32 /D_WINDOWS /W3 /D _CRT_SECURE_NO_DEPRECATE /D _CRT_NONSTDC_NO_DEPRECATE /D _SCL_SECURE_NO_WARNINGS /Gy /bigobj /Oi /MP8 /MDd /Zi /Ob0 /Od /RTC1 Linker flags (Release): /machine:x64 /INCREMENTAL:NO /debug Linker flags (Debug): /machine:x64 /debug /INCREMENTAL Precompiled headers: YES Extra dependencies: comctl32 gdi32 ole32 setupapi ws2_32 vfw32 cudart nppc nppi npps cufft -LC:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v8.0/lib/x64 3rdparty dependencies: zlib libjpeg libwebp libpng libtiff libjasper IlmImf OpenCV modules: To be built: cudev core cudaarithm flann imgproc ml video cudabgsegm cudafilters cudaimgproc cudawarping imgcodecs photo shape videoio cudacodec highgui objdetect ts features2d calib3d cudafeatures2d cudalegacy cudaobjdetect cudaoptflow cudastereo stitching superres videostab python2 Disabled: world Disabled by dependency: - Unavailable: java python3 viz Windows RT support: NO GUI: QT: NO Win32 UI: YES OpenGL support: NO VTK support: NO Media I/O: ZLib: build (ver 1.2.8) JPEG: build (ver 90) WEBP: build (ver 0.3.1) PNG: build (ver 1.6.19) TIFF: build (ver 42 - 4.0.2) JPEG 2000: build (ver 1.900.1) OpenEXR: build (ver 1.7.1) GDAL: NO Video I/O: Video for Windows: YES DC1394 1.x: NO DC1394 2.x: NO FFMPEG: YES (prebuilt binaries) codec: YES (ver 56.41.100) format: YES (ver 56.36.101) util: YES (ver 54.27.100) swscale: YES (ver 3.1.101) resample: NO gentoo-style: YES GStreamer: NO OpenNI: NO OpenNI PrimeSensor Modules: NO OpenNI2: NO PvAPI: NO GigEVisionSDK: NO DirectShow: YES Media Foundation: NO XIMEA: NO Intel PerC: NO Parallel framework: Concurrency Other third-party libraries: Use IPP: 9.0.1 [9.0.1] at: C:/compile/opencv/3rdparty/ippicv/unpack/ippicv_win Use IPP Async: NO Use Eigen: NO Use Cuda: YES (ver 8.0) Use OpenCL: YES Use custom HAL: NO NVIDIA CUDA Use CUFFT: YES Use CUBLAS: NO USE NVCUVID: NO NVIDIA GPU arch: 30 35 50 52 60 61 NVIDIA PTX archs: 30 Use fast math: NO OpenCL: Version: dynamic Include path: C:/compile/opencv/3rdparty/include/opencl/1.2 Use AMDFFT: NO Use AMDBLAS: NO Python 2: Interpreter: C:/Python27/python.exe (ver 2.7.13) Libraries: C:/Python27/libs/python27.lib (ver 2.7.13) numpy: C:/Python27/lib/site-packages/numpy/core/include (ver 1.11.3) packages path: C:/Python27/Lib/site-packages Python 3: Interpreter: NO Python (for build): C:/Python27/python.exe Java: ant: NO JNI: C:/Program Files/Java/jdk1.8.0_161/include C:/Program Files/Java/jdk1.8.0_161/include/win32 C:/Program Files/Java/jdk1.8.0_161/include Java wrappers: NO Java tests: NO Matlab: Matlab not found or implicitly disabled Documentation: Doxygen: NO PlantUML: NO Tests and samples: Tests: YES Performance tests: NO C/C++ Examples: NO Install path: C:/compile/opencv/build/install cvconfig.h is in: C:/compile/opencv/build ----------------------------------------------------------------- Configuring done Generating done
Notice for gencode
CUDA NVCC target flags: -gencode;arch=compute_30,code=sm_30;-gencode;arch=compute_35,code=sm_35;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_52,code=sm_52;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_61,code=sm_61;-gencode;arch=compute_30,code=compute_30
Open OpenCV.sln
with VS 2015
and build release version.
this may take hours to finish.
possible solutions
With
BUILD_PERF_TESTS
andBUILD_TESTS
disabled, I managed to build OpenCV 3.1 with CUDA 8.0 on Windows 10 with VS2015 x64 arch target. Without building test/performance modules, the build process costs less time as well : )
I actually got it to work both on my laptop and my desktop (GTX960M and GTX970 respectively) running with OpenCV 3.2 and the latest version of CUDA 8.0 for Win10 in Visual Studio 15 Community! What I did was to enable
WITH_CUBLAS
aswell asWITH_CUDA
. I also turned offBUILD_PERF_TESTS
andBUILD_TESTS
. The configuration was built using the Visual Studio 14 2015 C++ compiler.
my solution:
disable `BUILD_PERF_TESTS`
configure and build again. this time cost only about 1 minutes.
after error fixed,build results
OpenCV GPU
module is written using CUDA
, therefore it benefits from the CUDA
ecosystem.
GPU modules includes class cv::cuda::GpuMat
which is a primary container for data kept in GPU memory. It’s interface is very similar with cv::Mat
, its CPU counterpart. All GPU functions receive GpuMat as input and output arguments. This allows to invoke several GPU algorithms without downloading data. GPU module API interface is also kept similar with CPU interface where possible. So developers who are familiar with Opencv on CPU could start using GPU straightaway.
The GPU module is designed as a host-level API. This means that if you have pre-compiled OpenCV GPU binaries, you are not required to have the CUDA Toolkit installed or write any extra code to make use of the GPU.
find_package(OpenCV REQUIRED COMPONENTS core highgui imgproc features2d calib3d cudaarithm cudabgsegm cudafilters cudaimgproc cudawarping cudafeatures2d # for cuda-enabled ) # MESSAGE( [Main] " OpenCV_INCLUDE_DIRS = ${OpenCV_INCLUDE_DIRS}") MESSAGE( [Main] " OpenCV_LIBS = ${OpenCV_LIBS}")
In the sample below an image is loaded from local file, next it is uploaded to GPU, thresholded, downloaded and displayed.
#include <opencv2/cudaarithm.hpp> #include <opencv2/cudabgsegm.hpp> #include <opencv2/cudafilters.hpp> #include <opencv2/cudaimgproc.hpp> #include <opencv2/cudawarping.hpp> #include <opencv2/cudafeatures2d.hpp> int test_opencv_gpu() { try { cv::Mat src_host = cv::imread("file.png", CV_LOAD_IMAGE_GRAYSCALE); cv::cuda::GpuMat dst, src; src.upload(src_host); cv::cuda::threshold(src, dst, 128.0, 255.0, CV_THRESH_BINARY); cv::Mat result_host; dst.download(result_host); cv::imshow("Result", result_host); cv::waitKey(); } catch (const cv::Exception& ex) { std::cout << "Error: " << ex.what() << std::endl; } return 0; }
(1) 使用cuda版本的opencv caffe網絡的第一次建立很是耗時,後面的網絡建立則很是快。
(2) opencv的gpu代碼比cpu代碼慢,初次啓動多耗費20s左右。(事實是因爲編譯的caffe和GPU計算力不匹配致使的)
Your problem is that CUDA needs to initialize! And it will generally takes between serveral seconds
Why first function call is slow?
That is because of initialization overheads. On first GPU function callCuda Runtime API
is initialized implicitly.
The first gpu function call is always takes more time, because CUDA initialize context for device.
The following calls will be faster.
Not Reasons:
(1) CPU clockspeed is 10x faster than GPU clockspeed.
(2) memory transfer times between host (CPU) and device (GPU) (upload,downloa data)
gtx 1060 編譯的opencv caffe在gtx 970m上運行出現錯誤
im2col.cu Check failed: error == cudaSuccess (8 vs. 0) invalid device function
gtx 1060 sm_61 gtx 970m sm_52
im2col 是caffe的源文件,代表gtx 970m
的計算能力不支持可執行文件的運行。
see what-is-the-purpose-of-using-multiple-arch-flags-in-nvidias-nvcc-compiler
Roughly speaking, the code compilation flow goes like this:
CUDA C/C++ device code source --> PTX --> SASS
The virtual architecture (e.g.
compute_20
, whatever is specified by-arch compute
...) determines what type of PTX code will be generated. The additional switches (e.g.-code sm_21
) determine what type of SASS code will be generated. SASS is actually executable object code for a GPU (machine language). An executable can contain multiple versions of SASS and/or PTX, and there is a runtime loader mechanism that will pick appropriate versions based on the GPU actually being used.
for win7, if we install 398.82-desktop-win8-win7-64bit-international-whql.exe
,errors may occur:
> nvidia-smi.exe Failed to initialize NVML: Unknown error
Solutions: use older drivers 385.69
(1) api在linux平均耗時3ms;一樣的代碼在windows平均耗時14ms
(2) vs編譯開啓代碼優化先後性能相差接近5倍,125ms vs 25ms
(3) cmake編譯RELEASE選項默認已經開啓了代碼優化 -O3