[Scikit-learn] Dynamic Bayesian Network - Kalman Filter

看上去不錯的網站:http://iacs-courses.seas.harvard.edu/courses/am207/blog/lecture-18.htmlhtml

SciPy Cookbookhttp://scipy-cookbook.readthedocs.io/items/KalmanFiltering.htmlpython

 


 

良心視頻:卡爾曼濾波器的原理以及在matlab中的實現dom

講解思路貌似是在已知迭代結果的基礎上作講解,不是很透徹。post

1. 用矩陣表示網站

2. 本質就是:二維高斯的協方差與sampling效果this

3. 不肯定性在狀態之間的傳遞url

4. 矩陣表示觀察數據spa

5. Kalman係數3d

6. 噪聲協方差矩陣的更新code

7. Matlab實現

 

思考: 

與數學領域 openBUGS 的估參的關係是什麼?[Bayes] openBUGS: this is not the annoying bugs in programming

一個是對逐漸增多數據的實時預測;一個是對整體數據的迴歸擬合。

 

代碼示例:純python代碼

# Kalman filter example demo in Python

# A Python implementation of the example given in pages 11-15 of "An # Introduction to the Kalman Filter" by Greg Welch and Gary Bishop, # University of North Carolina at Chapel Hill, Department of Computer # Science, TR 95-041, # http://www.cs.unc.edu/~welch/kalman/kalmanIntro.html

# by Andrew D. Straw

import numpy as np import matplotlib.pyplot as plt plt.rcParams['figure.figsize'] = (10, 8) # intial parameters
n_iter = 50 sz = (n_iter,) # size of array
x  = -0.37727  # truth value (typo in example at top of p. 13 calls this z)
z  = np.random.normal(x,0.1,size=sz) # observations (normal about x, sigma=0.1)
# 已得到一組隨機數

Q = 1e-5 # process variance # allocate space for arrays xhat =np.zeros(sz) # a posteri estimate of x P =np.zeros(sz) # a posteri error estimate xhatminus =np.zeros(sz) # a priori estimate of x Pminus =np.zeros(sz) # a priori error estimate K =np.zeros(sz) # gain or blending factor R = 0.1**2 # estimate of measurement variance, change to see effect # intial guesses xhat[0] = 0.0 P[0] = 1.0
# 開始迭代 for k in range(1, n_iter): # time update xhatminus[k] = xhat[k-1] Pminus[k] = P[k-1]+Q # measurement update K[k] = Pminus[k]/( Pminus[k]+R ) xhat[k] = xhatminus[k]+K[k]*(z[k]-xhatminus[k]) P[k] = (1-K[k])*Pminus[k] plt.figure() plt.plot(z,'k+',label='noisy measurements') plt.plot(xhat,'b-',label='a posteri estimate') plt.axhline(x,color='g',label='truth value') plt.legend() plt.title('Estimate vs. iteration step', fontweight='bold') plt.xlabel('Iteration') plt.ylabel('Voltage') plt.figure() valid_iter = range(1,n_iter) # Pminus not valid at step 0 plt.plot(valid_iter,Pminus[valid_iter],label='a priori error estimate') plt.title('Estimated $\it{\mathbf{a \ priori}}$ error vs. iteration step', fontweight='bold') plt.xlabel('Iteration') plt.ylabel('$(Voltage)^2$') plt.setp(plt.gca(),'ylim',[0,.01]) plt.show()

Result: 

 

Goto: [OpenCV] Samples 14: kalman filter

其實,真正的Kalman Filter用得是以下理論,上述例子只是教小學生的入門讀物。

 

Goto: https://www.youtube.com/watch?v=UVNeulkWWUM by XU Yida

關鍵須要理解: http://www.cnblogs.com/rubbninja/p/6220284.html

 

【重點】證實過程的理解關鍵是:

由於是線性濾波器,自己又具有一個alpha迭代的過程,那麼先找出joint distribution,

而後,根據高斯的性質直接得出條件機率,便是Update Rule,這樣正好對應於濾波器的alpha迭代過程的形式。

這個條件機率就是關於xt的,也就是最新的狀態的機率分佈,那麼指望也就是miu,就是最新的xt

大概就是這麼個思路,筆記在本本上,具體請看視頻。符號比較多,但大致就是如上脈絡。

相關文章
相關標籤/搜索