Summary on deep learning framework --- Torch7 html
2018-07-22 21:30:28linux
1. 嘗試第一個 CNN 的 torch版本, 代碼以下:git
1 -- We now have 5 steps left to do in training our first torch neural network
2 -- 1. Load and normalize data
3 -- 2. Define Neural Network
4 -- 3. Define Loss function
5 -- 4. Train network on training data
6 -- 5. Test network on test data.
7
8
9
10
11 -- 1. Load and normalize data
12 require 'paths'
13 require 'image'; 14 if (not paths.filep("cifar10torchsmall.zip")) then
15 os.execute('wget -c https://s3.amazonaws.com/torch7/data/cifar10torchsmall.zip') 16 os.execute('unzip cifar10torchsmall.zip') 17 end
18 trainset = torch.load('cifar10-train.t7') 19 testset = torch.load('cifar10-test.t7') 20 classes = {'airplane', 'automobile', 'bird', 'cat', 21 'deer', 'dog', 'frog', 'horse', 'ship', 'truck'} 22
23 print(trainset) 24 print(#trainset.data) 25
26 itorch.image(trainset.data[100]) -- display the 100-th image in dataset
27 print(classes[trainset.label[100]]) 28
29 -- ignore setmetatable for now, it is a feature beyond the scope of this tutorial.
30 -- It sets the index operator
31 setmetatable(trainset, 32 {__index = function(t, i) 33 return {t.data[i], t.label[i]} 34 end} 35 ); 36 trainset.data = trainset.data:double() -- convert the data from a ByteTensor to a DoubleTensor.
37
38 function trainset:size() 39 return self.data:size(1) 40 end
41
42 print(trainset:size()) 43 print(trainset[33]) 44 itorch.image(trainset[33][11]) 45
46 redChannel = trainset.data[{ {}, {1}, {}, {} }] -- this pick {all images, 1st channel, all vertical pixels, all horizontal pixels}
47 print(#redChannel) 48
49 -- TODO:fill
50 mean = {} 51 stdv = {} 52 for i = 1,3 do
53 mean[i] = trainset.data[{ {}, {i}, {}, {} }]:mean() -- mean estimation
54 print('Channel ' .. i .. ' , Mean: ' .. mean[i]) 55 trainset.data[{ {}, {i}, {}, {} }]:add(-mean[i]) -- mean subtraction
56
57 stdv[i] = trainset.data[ { {}, {i}, {}, {} }]:std() -- std estimation
58 print('Channel ' .. i .. ' , Standard Deviation: ' .. stdv[i]) 59 trainset.data[{ {}, {i}, {}, {} }]:div(stdv[i]) -- std scaling
60 end
61
62
63
64 -- 2. Define Neural Network
65 net = nn.Sequential() 66 net:add(nn.SpatialConvolution(3, 6, 5, 5)) -- 3 input image channels, 6 output channels, 5x5 convolution kernel
67 net:add(nn.ReLU()) -- non-linearity
68 net:add(nn.SpatialMaxPooling(2,2,2,2)) -- A max-pooling operation that looks at 2x2 windows and finds the max.
69 net:add(nn.SpatialConvolution(6, 16, 5, 5)) 70 net:add(nn.ReLU()) -- non-linearity
71 net:add(nn.SpatialMaxPooling(2,2,2,2)) 72 net:add(nn.View(16*5*5)) -- reshapes from a 3D tensor of 16x5x5 into 1D tensor of 16*5*5
73 net:add(nn.Linear(16*5*5, 120)) -- fully connected layer (matrix multiplication between input and weights)
74 net:add(nn.ReLU()) -- non-linearity
75 net:add(nn.Linear(120, 84)) 76 net:add(nn.ReLU()) -- non-linearity
77 net:add(nn.Linear(84, 10)) -- 10 is the number of outputs of the network (in this case, 10 digits)
78 net:add(nn.LogSoftMax()) -- converts the output to a log-probability. Useful for classification problems
79
80
81 -- 3. Let us difine the Loss function
82 criterion = nn.ClassNLLCriterion() 83
84
85
86 -- 4. Train the neural network
87 trainer = nn.StochasticGradient(net, criterion) 88 trainer.learningRate = 0.001
89 trainer.maxIteration = 5 -- just do 5 epochs of training.
90 trainer:train(trainset) 91
92
93
94 -- 5. Test the network, print accuracy
95 print(classes[testset.label[100]]) 96 itorch.image(testset.data[100]) 97
98 testset.data = testset.data:double() -- convert from Byte tensor to Double tensor
99 for i=1,3 do -- over each image channel
100 testset.data[{ {}, {i}, {}, {} }]:add(-mean[i]) -- mean subtraction
101 testset.data[{ {}, {i}, {}, {} }]:div(stdv[i]) -- std scaling
102 end
103
104 -- for fun, print the mean and standard-deviation of example-100
105 horse = testset.data[100] 106 print(horse:mean(), horse:std()) 107
108 print(classes[testset.label[100]]) 109 itorch.image(testset.data[100]) 110 predicted = net:forward(testset.data[100]) 111
112 -- the output of the network is Log-Probabilities. To convert them to probabilities, you have to take e^x
113 print(predicted:exp()) 114
115
116 for i=1,predicted:size(1) do
117 print(classes[i], predicted[i]) 118 end
119
120
121 -- test the accuracy
122 correct = 0
123 for i=1,10000 do
124 local groundtruth = testset.label[i] 125 local prediction = net:forward(testset.data[i]) 126 local confidences, indices = torch.sort(prediction, true) -- true means sort in descending order
127 if groundtruth == indices[1] then
128 correct = correct + 1
129 end
130 end
131
132
133 print(correct, 100*correct/10000 .. ' % ') 134
135 class_performance = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0} 136 for i=1,10000 do
137 local groundtruth = testset.label[i] 138 local prediction = net:forward(testset.data[i]) 139 local confidences, indices = torch.sort(prediction, true) -- true means sort in descending order
140 if groundtruth == indices[1] then
141 class_performance[groundtruth] = class_performance[groundtruth] + 1
142 end
143 end
144
145
146 for i=1,#classes do
147 print(classes[i], 100*class_performance[i]/1000 .. ' %') 148 end
149
150 require 'cunn'; 151 net = net:cuda() 152 criterion = criterion:cuda() 153 trainset.data = trainset.data:cuda() 154 trainset.label = trainset.label:cuda() 155
156 trainer = nn.StochasticGradient(net, criterion) 157 trainer.learningRate = 0.001
158 trainer.maxIteration = 5 -- just do 5 epochs of training.
159
160
161 trainer:train(trainset)
那麼,運行起來 卻出現以下的問題:
github
(1).windows
/home/wangxiao/torch/install/bin/luajit: ./train_network.lua:26: attempt to index global 'itorch' (a nil value)
stack traceback:
./train_network.lua:26: in main chunk
[C]: in function 'dofile'
...xiao/torch/install/lib/luarocks/rocks/trepl/scm-1/bin/th:145: in main chunk
[C]: at 0x00406670
wangxiao@AHU:~/Documents/Lua test examples$ 緩存
主要是 itorch 的問題, 另外就是 要引用 require 'nn' 來解決 沒法辨別 nn 的問題.bash
我是把 帶有 itorch 的那些行都暫時註釋了.less
2. 'libcudnn (R5) not found in library path.ide
wangxiao@AHU:~/Downloads/wide-residual-networks-master$ th ./train_Single_Multilabel_Image_Classification.lua
nil
/home/wangxiao/torch/install/bin/luajit: /home/wangxiao/torch/install/share/lua/5.1/trepl/init.lua:384: /home/wangxiao/torch/install/share/lua/5.1/trepl/init.lua:384: /home/wangxiao/torch/install/share/lua/5.1/cudnn/ffi.lua:1600: 'libcudnn (R5) not found in library path.
Please install CuDNN from https://developer.nvidia.com/cuDNN
Then make sure files named as libcudnn.so.5 or libcudnn.5.dylib are placed in your library load path (for example /usr/local/lib , or manually add a path to LD_LIBRARY_PATH)oop
stack traceback:
[C]: in function 'error'
/home/wangxiao/torch/install/share/lua/5.1/trepl/init.lua:384: in function 'require'
./train_Single_Multilabel_Image_Classification.lua:8: in main chunk
[C]: in function 'dofile'
...xiao/torch/install/lib/luarocks/rocks/trepl/scm-1/bin/th:145: in main chunk
[C]: at 0x00406670
wangxiao@AHU:~/Downloads/wide-residual-networks-master$
================================================================>>
答案是:
從新下載了 cudnn-7.5-linux-x64-v5.0-ga.tgz
而且從新配置了,可是依然提醒這個問題,那麼,問題何在呢?查看了博客:http://blog.csdn.net/hungryof/article/details/51557666 中的內容:
截取其中一段錯誤信息:
Please install CuDNN from https://developer.nvidia.com/cuDNN Then make sure files named as libcudnn.so.5 or libcudnn.5.dylib are placed in your library load path (for example /usr/local/lib , or manually add a path to LD_LIBRARY_PATH)
LD_LIBRARY_PATH是該環境變量,主要用於指定查找共享庫(動態連接庫)時除了默認路徑以外的其餘路徑。因爲剛纔已經將
「libcudnn*」複製到了/usr/local/cuda-7.5/lib64/下面,所以須要
此時運行
th neural_style.lua -gpu 0 -backend cudnn
成功了!!!!
============================================================>>>>
評價: 按照這種作法試了,確實成功了! 贊一個 !!!
3. 利用 gm 加載圖像時,提示錯誤,可是裝上那個包仍然提示錯誤:
Load library:
gm = require 'graphicsmagick'
First, we provide two high-level functions to load/save directly into/form tensors:
img = gm.load('/path/to/image.png' [, type]) -- type = 'float' (default) | 'double' | 'byte' gm.save('/path/to/image.jpg' [,quality]) -- quality = 0 to 100 (for jpegs only)
The following provide a more controlled flow for loading/saving jpegs.
Create an image, from a file:
image = gm.Image('/path/to/image.png') -- or image = gm.Image() image:load('/path/to/image.png')
可是悲劇的仍然有錯, 只好換了用 image.load() 的方式加載圖像:
--To load as byte tensor for rgb imagefile
local img = image.load(imagefile,3,'byte')
4. Torch 保存 txt 文件:
-- save opt
file = torch.DiskFile(paths.concat(opt.checkpoints_dir, opt.name, 'opt.txt'), 'w')
file:writeObject(opt)
file:close()
5. Torch 建立新的文件夾
opts.modelPath = opt.modelDir .. opt.modelName
if not paths.dirp(opt.modelPath) then
paths.mkdir(opts.modelPath)
end
6. Torch Lua 保存 圖像到文件夾
藉助 image package,首先安裝: luarocks install image
而後 require 'image'
就可使用了: local img = image.save('./saved_pos_neg_image/candidate_' .. tostring(i) .. tostring(j) .. '.png', pos_patch, 1, 32, 32)
7. module 'bit' not found:No LuaRocks module found for bit
wangxiao@AHU:/media/wangxiao/724eaeef-e688-4b09-9cc9-dfaca44079b2/fast-neural-style-master$ th ./train.lua
/home/wangxiao/torch/install/bin/lua: /home/wangxiao/torch/install/share/lua/5.2/trepl/init.lua:389: /home/wangxiao/torch/install/share/lua/5.2/trepl/init.lua:389: /home/wangxiao/torch/install/share/lua/5.2/trepl/init.lua:389: module 'bit' not found:No LuaRocks module found for bit
no field package.preload['bit']
no file '/home/wangxiao/.luarocks/share/lua/5.2/bit.lua'
no file '/home/wangxiao/.luarocks/share/lua/5.2/bit/init.lua'
no file '/home/wangxiao/torch/install/share/lua/5.2/bit.lua'
no file '/home/wangxiao/torch/install/share/lua/5.2/bit/init.lua'
no file '/home/wangxiao/.luarocks/share/lua/5.1/bit.lua'
no file '/home/wangxiao/.luarocks/share/lua/5.1/bit/init.lua'
no file '/home/wangxiao/torch/install/share/lua/5.1/bit.lua'
no file '/home/wangxiao/torch/install/share/lua/5.1/bit/init.lua'
no file './bit.lua'
no file '/home/wangxiao/torch/install/share/luajit-2.1.0-beta1/bit.lua'
no file '/usr/local/share/lua/5.1/bit.lua'
no file '/usr/local/share/lua/5.1/bit/init.lua'
no file '/home/wangxiao/.luarocks/lib/lua/5.2/bit.so'
no file '/home/wangxiao/torch/install/lib/lua/5.2/bit.so'
no file '/home/wangxiao/torch/install/lib/bit.so'
no file '/home/wangxiao/.luarocks/lib/lua/5.1/bit.so'
no file '/home/wangxiao/torch/install/lib/lua/5.1/bit.so'
no file './bit.so'
no file '/usr/local/lib/lua/5.1/bit.so'
no file '/usr/local/lib/lua/5.1/loadall.so'
stack traceback:
[C]: in function 'error'
/home/wangxiao/torch/install/share/lua/5.2/trepl/init.lua:389: in function 'require'
./train.lua:5: in main chunk
[C]: in function 'dofile'
...xiao/torch/install/lib/luarocks/rocks/trepl/scm-1/bin/th:145: in main chunk
[C]: in ?
wangxiao@AHU:/media/wangxiao/724eaeef-e688-4b09-9cc9-dfaca44079b2/fast-neural-style-master$
在終端中執行:luarocks install luabitop
就能夠了。
8. HDF5Group:read() - no such child 'media' for [HDF5Group 33554432 /]
/home/wangxiao/torch/install/bin/lua: /home/wangxiao/torch/install/share/lua/5.2/hdf5/group.lua:312: HDF5Group:read() - no such child 'media' for [HDF5Group 33554432 /]
stack traceback:
[C]: in function 'error'
/home/wangxiao/torch/install/share/lua/5.2/hdf5/group.lua:312: in function </home/wangxiao/torch/install/share/lua/5.2/hdf5/group.lua:302>
(...tail calls...)
./fast_neural_style/DataLoader.lua:44: in function '__init'
/home/wangxiao/torch/install/share/lua/5.2/torch/init.lua:91: in function </home/wangxiao/torch/install/share/lua/5.2/torch/init.lua:87>
[C]: in function 'DataLoader'
./train.lua:138: in function 'main'
./train.lua:327: in main chunk
[C]: in function 'dofile'
...xiao/torch/install/lib/luarocks/rocks/trepl/scm-1/bin/th:145: in main chunk
[C]: in ?
最近在訓練 類型遷移的代碼,發現這個蛋疼的問題。哎。。糾結好幾天了。。這個 hdf5 到底怎麼回事 ? 求解釋 !!!
------------------------------------------------------------------------------------------------
後來發現, 是我本身的數據集路徑設置的有問題, 如: 應該是 CoCo/train/image/
可是,我只是給定了 CoCo/train/ ...
9. 怎麼設置 torch代碼在哪塊 GPU 上運行 ? 或者 怎麼設置在兩塊卡上同時運行 ?
如圖所示: export CUDA_VISIBLE_DEVICES=0 便可指定代碼在 GPU-0 上運行.
10. When load the pre-trained VGG model, got the following errors:
MODULE data UNDEFINED
warning: module 'data [type 5]' not found
nn supports no groups!
warning: module 'conv2 [type 4]' not found
nn supports no groups!
warning: module 'conv4 [type 4]' not found
nn supports no groups!
warning: module 'conv5 [type 4]' not found
1 using cudnn 2 Successfully loaded ./feature_transfer/AlexNet_files/bvlc_alexnet.caffemodel 3 MODULE data UNDEFINED 4 warning: module 'data [type 5]' not found 5 nn supports no groups!
6 warning: module 'conv2 [type 4]' not found 7 nn supports no groups!
8 warning: module 'conv4 [type 4]' not found 9 nn supports no groups!
10 warning: module 'conv5 [type 4]' not found
1 wangxiao@AHU:~/Downloads/multi-modal-visual-tracking$ qlua ./train_match_function_alexNet_version_2017_02_28.lua 2 using cudnn 3 Successfully loaded ./feature_transfer/AlexNet_files/bvlc_alexnet.caffemodel 4 MODULE data UNDEFINED 5 warning: module 'data [type 5]' not found 6 nn supports no groups!
7 warning: module 'conv2 [type 4]' not found 8 nn supports no groups!
9 warning: module 'conv4 [type 4]' not found 10 nn supports no groups!
11 warning: module 'conv5 [type 4]' not found 12 conv1: 96 3 11 11
13 conv3: 384 256 3 3
14 fc6: 1 1 9216 4096
15 fc7: 1 1 4096 4096
16 fc8: 1 1 4096 1000
17 nn.Sequential { 18 [input -> (1) -> (2) -> (3) -> output] 19 (1): nn.SplitTable 20 (2): nn.ParallelTable { 21 input 22 |`-> (1): nn.Sequential { 23 | [input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> (7) -> (8) -> (9) -> (10) -> (11) -> (12) -> (13) -> (14) -> (15) -> (16) -> (17) -> (18) -> output] 24 | (1): nn.SpatialConvolution(3 -> 96, 11x11, 4,4) 25 | (2): nn.ReLU 26 | (3): nn.SpatialCrossMapLRN 27 | (4): nn.SpatialMaxPooling(3x3, 2,2) 28 | (5): nn.ReLU 29 | (6): nn.SpatialCrossMapLRN 30 | (7): nn.SpatialMaxPooling(3x3, 2,2) 31 | (8): nn.SpatialConvolution(256 -> 384, 3x3, 1,1, 1,1) 32 | (9): nn.ReLU 33 | (10): nn.ReLU 34 | (11): nn.ReLU 35 | (12): nn.SpatialMaxPooling(3x3, 2,2) 36 | (13): nn.View(-1) 37 | (14): nn.Linear(9216 -> 4096) 38 | (15): nn.ReLU 39 | (16): nn.Dropout(0.500000) 40 | (17): nn.Linear(4096 -> 4096) 41 | (18): nn.ReLU 42 | } 43 `-> (2): nn.Sequential { 44 [input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> (7) -> (8) -> (9) -> (10) -> (11) -> (12) -> (13) -> (14) -> (15) -> (16) -> (17) -> (18) -> output] 45 (1): nn.SpatialConvolution(3 -> 96, 11x11, 4,4) 46 (2): nn.ReLU 47 (3): nn.SpatialCrossMapLRN 48 (4): nn.SpatialMaxPooling(3x3, 2,2) 49 (5): nn.ReLU 50 (6): nn.SpatialCrossMapLRN 51 (7): nn.SpatialMaxPooling(3x3, 2,2) 52 (8): nn.SpatialConvolution(256 -> 384, 3x3, 1,1, 1,1) 53 (9): nn.ReLU 54 (10): nn.ReLU 55 (11): nn.ReLU 56 (12): nn.SpatialMaxPooling(3x3, 2,2) 57 (13): nn.View(-1) 58 (14): nn.Linear(9216 -> 4096) 59 (15): nn.ReLU 60 (16): nn.Dropout(0.500000) 61 (17): nn.Linear(4096 -> 4096) 62 (18): nn.ReLU 63 } 64 ... -> output 65 } 66 (3): nn.PairwiseDistance 67 } 68 =================================================================================================================
69 ================= AlextNet based Siamese Search for Visual Tracking ========================
70 =================================================================================================================
71 ==>> The Benchmark Contain: 36 videos ... 72 deal with video 1/36 video name: BlurFace ... please waiting ... 73 the num of gt bbox: 493
74 the num of video frames: 493
75 ========>>>> Begin to track 2 video name: nil-th frame, please waiting ... 76 ========>>>> Begin to track 3 video name: nil-th frame, please waiting ... ............] ETA: 0ms | Step: 0ms 77 ========>>>> Begin to track 4 video name: nil-th frame, please waiting ... ............] ETA: 39s424ms | Step: 80ms 78 ========>>>> Begin to track 5 video name: nil-th frame, please waiting ... ............] ETA: 33s746ms | Step: 69ms 79 ========>>>> Begin to track 6 video name: nil-th frame, please waiting ... ............] ETA: 31s817ms | Step: 65ms 80 ========>>>> Begin to track 7 video name: nil-th frame, please waiting ... ............] ETA: 32s575ms | Step: 66ms 81 ========>>>> Begin to track 8 video name: nil-th frame, please waiting ... ............] ETA: 34s376ms | Step: 70ms 82 ========>>>> Begin to track 9 video name: nil-th frame, please waiting ... ............] ETA: 40s240ms | Step: 82ms 83 ========>>>> Begin to track 10 video name: nil-th frame, please waiting ... ...........] ETA: 44s211ms | Step: 91ms 84 ========>>>> Begin to track 11 video name: nil-th frame, please waiting ... ...........] ETA: 45s993ms | Step: 95ms 85 ========>>>> Begin to track 12 video name: nil-th frame, please waiting ... ...........] ETA: 47s754ms | Step: 99ms 86 ========>>>> Begin to track 13 video name: nil-th frame, please waiting ... ...........] ETA: 50s392ms | Step: 104ms 87 ========>>>> Begin to track 14 video name: nil-th frame, please waiting ... ...........] ETA: 53s138ms | Step: 110ms 88 ========>>>> Begin to track 15 video name: nil-th frame, please waiting ... ...........] ETA: 55s793ms | Step: 116ms 89 ========>>>> Begin to track 16 video name: nil-th frame, please waiting ... ...........] ETA: 59s253ms | Step: 123ms 90 ========>>>> Begin to track 17 video name: nil-th frame, please waiting ... ...........] ETA: 1m2s | Step: 130ms 91 ========>>>> Begin to track 18 video name: nil-th frame, please waiting ... ...........] ETA: 1m5s | Step: 137ms 92 ========>>>> Begin to track 19 video name: nil-th frame, please waiting ... ...........] ETA: 1m8s | Step: 143ms 93 ========>>>> Begin to track 20 video name: nil-th frame, please waiting ... ...........] ETA: 1m11s | Step: 149ms 94 //////////////////////////////////////////////////////////////////////////..............] ETA: 1m14s | Step: 157ms
95 ==>> pos_proposal_list: 19
96 ==>> neg_proposal_list: 19
97 qlua: /home/wangxiao/torch/install/share/lua/5.1/nn/Container.lua:67: 98 In 2 module of nn.Sequential: 99 In 1 module of nn.ParallelTable: 100 In 8 module of nn.Sequential: 101 /home/wangxiao/torch/install/share/lua/5.1/nn/THNN.lua:117: Need input of dimension 3 and input.size[0] == 256 but got input to be of shape: [96 x 13 x 13] at /tmp/luarocks_cunn-scm-1-6210/cunn/lib/THCUNN/generic/SpatialConvolutionMM.cu:49
102 stack traceback: 103 [C]: in function 'v'
104 /home/wangxiao/torch/install/share/lua/5.1/nn/THNN.lua:117: in function 'SpatialConvolutionMM_updateOutput'
105 ...ao/torch/install/share/lua/5.1/nn/SpatialConvolution.lua:79: in function <...ao/torch/install/share/lua/5.1/nn/SpatialConvolution.lua:76>
106 [C]: in function 'xpcall'
107 /home/wangxiao/torch/install/share/lua/5.1/nn/Container.lua:63: in function 'rethrowErrors'
108 ...e/wangxiao/torch/install/share/lua/5.1/nn/Sequential.lua:44: in function <...e/wangxiao/torch/install/share/lua/5.1/nn/Sequential.lua:41>
109 [C]: in function 'xpcall'
110 /home/wangxiao/torch/install/share/lua/5.1/nn/Container.lua:63: in function 'rethrowErrors'
111 ...angxiao/torch/install/share/lua/5.1/nn/ParallelTable.lua:12: in function <...angxiao/torch/install/share/lua/5.1/nn/ParallelTable.lua:10>
112 [C]: in function 'xpcall'
113 /home/wangxiao/torch/install/share/lua/5.1/nn/Container.lua:63: in function 'rethrowErrors'
114 ...e/wangxiao/torch/install/share/lua/5.1/nn/Sequential.lua:44: in function 'forward'
115 ./train_match_function_alexNet_version_2017_02_28.lua:525: in function 'opfunc'
116 /home/wangxiao/torch/install/share/lua/5.1/optim/adam.lua:37: in function 'optim'
117 ./train_match_function_alexNet_version_2017_02_28.lua:550: in main chunk 118
119
120
121 WARNING: If you see a stack trace below, it doesn't point to the place where this error occurred. Please use only the one above.
122 stack traceback: 123 [C]: at 0x7f86014df9c0
124 [C]: in function 'error'
125 /home/wangxiao/torch/install/share/lua/5.1/nn/Container.lua:67: in function 'rethrowErrors'
126 ...e/wangxiao/torch/install/share/lua/5.1/nn/Sequential.lua:44: in function 'forward'
127 ./train_match_function_alexNet_version_2017_02_28.lua:525: in function 'opfunc'
128 /home/wangxiao/torch/install/share/lua/5.1/optim/adam.lua:37: in function 'optim'
129 ./train_match_function_alexNet_version_2017_02_28.lua:550: in main chunk 130 wangxiao@AHU:~/Downloads/multi-modal-visual-tracking$
Just like the screen shot above, change the 'nn' into 'cudnn' will be ok and passed.
11. both (null) and torch.FloatTensor have no less-than operator
qlua: ./test_MM_tracker_VGG_.lua:254: both (null) and torch.FloatTensor have no less-than operator
stack traceback:
[C]: at 0x7f628816e9c0
[C]: in function '__lt'
./test_MM_tracker_VGG_.lua:254: in main chunk
Because it is floatTensor () style and you can change it like this if you want this value printed in a for loop: predictValue -->> predictValue[i] .
12.
========>>>> Begin to track the 6-th and the video name is ILSVRC2015_train_00109004 , please waiting ...
THCudaCheck FAIL file=/tmp/luarocks_cutorch-scm-1-707/cutorch/lib/THC/generic/THCStorage.cu line=66 error=2 : out of memory
qlua: cuda runtime error (2) : out of memory at /tmp/luarocks_cutorch-scm-1-707/cutorch/lib/THC/generic/THCStorage.cu:66
stack traceback:
[C]: at 0x7fa20a8f99c0
[C]: at 0x7fa1dddfbee0
[C]: in function 'Tensor'
./train_match_function_VGG_version_2017_03_02.lua:377: in main chunk
wangxiao@AHU:~/Downloads/multi-modal-visual-tracking$
Yes, it is just out of memory of GPU. Just turn the batchsize to a small value, it may work. It worked for me. Ha ha ...
13. luarocks install class does not have any effect, it still shown me the error: No Module named "class" in Torch.
==>> in terminal, install this package in sudo.
==>> then, it will be OK.
14. How to install opencv 3.1 on Ubuntu 14.04 ???
As we can found from: http://blog.csdn.net/a125930123/article/details/52091140
1. first, you should install torch successfully ;
2. then, just follow what the blog said here:
安裝opencv3.1
一、安裝必要的包
sudo apt-get install build-essential
sudo apt-get install cmake git libgtk2.0-dev pkg-config libavcodec-dev libavformat-dev libswscale-dev
二、下載opencv3.1
http://opencv.org/downloads.html
解壓:unzip opencv-3.1.0
三、安裝
cd ~/opencv-3.1.0
mkdir build
cd build
cmake -D CMAKE_BUILD_TYPE=Release -D CMAKE_INSTALL_PREFIX=/usr/local ..
sudo make -j24
sudo make install -j24
sudo /bin/bash -c 'echo "/usr/local/lib" > /etc/ld.so.conf.d/opencv.conf'
sudo ldconfig
安裝完成
四、問題
的問題。在安裝過程當中可能會出現沒法下載ippicv_linux_20151201.tgz
解決方案:
:https://raw.githubusercontent.com/Itseez/opencv_3rdparty/81a676001ca8075ada498583e4166079e5744668/ippicv/ippicv_linux_20151201.tgz手動下載ippicv_linux_20151201.tgz
將下載好的文件 放入 中,若是已經存在 ,則替換掉,這樣就能夠安裝完成了。opencv-3.1.0/3rdparty/ippicv/downloads/linux-808b791a6eac9ed78d32a7666804320e
五、最後執行命令
luarocks install cv
But, maybe you may found some errors, such as:
cudalegacy/src/graphcuts.cpp:120:54: error: ‘NppiGraphcutState’ has not been declared (solution draw from: http://blog.csdn.net/allyli0022/article/details/62859290)
At this moment, you need to change some files:
found graphcuts.cpp in opencv3.1, and do the following changes:
解決方案:須要修改一處源碼: 在graphcuts.cpp中將
#if !defined (HAVE_CUDA) || defined (CUDA_DISABLER)
改成
#if !defined (HAVE_CUDA) || defined (CUDA_DISABLER) || (CUDART_VERSION >= 8000)
then, try again, it will be ok...this code just want to make opencv3.1 work under cuda 8.0, you know...skip that judge sentence...
15. 安裝torch-hdf5
sudo apt-get install libhdf5-serial-dev hdf5-tools git clone https://github.com/deepmind/torch-hdf5
cd torch-hdf5 sudo luarocks make hdf5-0-0.rockspec LIBHDF5_LIBDIR=」/usr/lib/x86_64-Linux-gnu/」
17. iTorch安裝
git clone https://github.com/zeromq/zeromq4-1.git
mkdir build-zeromq cd build-zeromq cmake .. make && make install 安裝完以後,luarocks install itorch 以後能夠經過luarocks list查看是否安裝成功