前言:html
本文主要是bengio的deep learning tutorial教程主頁中最後一個sample:rnn-rbm in polyphonic music. 即用RNN-RBM來model復調音樂,訓練過程當中採用的是midi格式的音頻文件,接着用建好的model來產生復調音樂。對音樂建模的難點在與每首樂曲中幀間是高度時間相關的(這樣樣本的維度會很高),用普通的網絡模型是不能搞定的(普通設計網絡模型沒有考慮時間維度,圖模型中的HMM有這方面的能力),這種狀況下能夠採用RNN來處理,這裏的RNN爲recurrent neural network中文爲循環神經網絡,另外還有一種RNN爲recursive neural network翻爲遞歸神經網絡。本文中指的是循環神經網絡。node
RNN簡單介紹:python
首先來看RNN和普通的feed-forward網絡有什麼不一樣。RNN的網絡框架以下:linux
由結構圖能夠知道,RNN和feed-forward相比只是中間隱含層多了一個循環的圈而已,這個圈表示上一次隱含層的輸出做爲這一次隱含層的輸入,固然此時的輸入是須要乘以一個權值矩陣的,這樣的話RNN模型參數只多了個權值矩陣。更形象的RNN圖能夠參考:算法
以及圖:ruby
按照上圖所示,可知道RNN網絡前向傳播過程當中知足下面的公式(參考文獻Learning Recurrent Neural Networks with Hessian-Free Optimization):網絡
其代價函數能夠是重構的偏差:app
也能夠是交叉熵:框架
相信熟悉普通深究網絡的同窗看懂這些應該不難。dom
RNN-RBM簡單介紹:
RNN-RBM來自ICML2012的論文:Modeling Temporal Dependencies in High-Dimensional Sequences: Application to Polyphonic Music Generation and Transcription,它由一個單層的RBM網絡和單層的RNN網絡構成,且由RNN網絡的輸出做爲最終網絡的輸出。RBM部分當生成模型的功能,好比這裏的音樂生成,RNN部分當判別模型做用,好比它的輸出當值可當作提取的特徵。RNN-RBM模型的結構以下:
模型上面是RBM部分,下面是RNN部分,對應的公式能夠參考論文。模型中一共有9個參數:
整個模型的代價函數爲-P(v),其中:
對該loss function求導,而後採用SGD算法就能夠求出模型中的各個參數了。固然了,其中的RBM部分還須要用Gibbs採樣完成CD-k算法。
實驗結果:
實驗部分參考http://deeplearning.net/tutorial/rnnrbm.html,實驗須用的數據和paper對應的見http://www-etud.iro.umontreal.ca/~boulanni/icml2012. 因爲本人對樂理方面的知識不是很懂,不少實驗代碼細節沒有去深究,只是看下算法的大概流程。由RNN-RBM生成的兩個pinao roll數據以下(程序跑了20個小時左右):
迭代200次後的cost爲:
...... Epoch 197/200 -4.7050858655 Epoch 198/200 -4.69198161366 Epoch 199/200 -4.66586797348 Epoch 200/200 -4.68651185036
代碼以下:
# Author: Nicolas Boulanger-Lewandowski # University of Montreal (2012) # RNN-RBM deep learning tutorial # More information at http://deeplearning.net/tutorial/rnnrbm.html import glob import os import sys import numpy try: import pylab except ImportError: print "pylab isn't available, if you use their fonctionality, it will crash" print "It can be installed with 'pip install -q Pillow'" from midi.utils import midiread, midiwrite import theano import theano.tensor as T from theano.tensor.shared_randomstreams import RandomStreams #Don't use a python long as this don't work on 32 bits computers. numpy.random.seed(0xbeef) rng = RandomStreams(seed=numpy.random.randint(1 << 30)) theano.config.warn.subtensor_merge_bug = False #給定rbm的3個參數w,bv,bh,輸入端數據v,以及gibbs採用長度k #返回的tuple元素依次是:v_samples(k次gibbs採用獲得的輸入端數據,01化後的),cost(rbm模型中的-log(v)),monitor(監控用變量), #updates(保留每次迭代的中間過程,若是是shared變量的話) def build_rbm(v, W, bv, bh, k): '''Construct a k-step Gibbs chain starting at v for an RBM. v : Theano vector or matrix If a matrix, multiple chains will be run in parallel (batch). W : Theano matrix Weight matrix of the RBM. bv : Theano vector Visible bias vector of the RBM. bh : Theano vector Hidden bias vector of the RBM. k : scalar or Theano scalar Length of the Gibbs chain. Return a (v_sample, cost, monitor, updates) tuple: v_sample : Theano vector or matrix with the same shape as `v` Corresponds to the generated sample(s). cost : Theano scalar Expression whose gradient with respect to W, bv, bh is the CD-k approximation to the log-likelihood of `v` (training example) under the RBM. The cost is averaged in the batch case. monitor: Theano scalar Pseudo log-likelihood (also averaged in the batch case). updates: dictionary of Theano variable -> Theano variable The `updates` object returned by scan.''' def gibbs_step(v): #該函數功能是一次gibbs採樣後獲得的mean_v,v mean_h = T.nnet.sigmoid(T.dot(v, W) + bh) h = rng.binomial(size=mean_h.shape, n=1, p=mean_h, #產生二項分佈,隱含層節點01化 dtype=theano.config.floatX) mean_v = T.nnet.sigmoid(T.dot(h, W.T) + bv) v = rng.binomial(size=mean_v.shape, n=1, p=mean_v, #反向傳播,輸入層節點也01化 dtype=theano.config.floatX) return mean_v, v #一次Gibbs採樣後輸入層01化先後的值 #輸入的是v,輸出的是每一次Gibbs採樣後的v構成的list,一共進行k次Gibbs採樣 chain, updates = theano.scan(lambda v: gibbs_step(v)[1], outputs_info=[v], n_steps=k) #updates裏面裝的是每次的輸入值 v_sample = chain[-1] #k次Gibbs採樣後輸入端的值(01化事後的) mean_v = gibbs_step(v_sample)[0] #再次Gibbs前進一次,獲得沒有01化的輸入端數碼,用於監控的變量 monitor = T.xlogx.xlogy0(v, mean_v) + T.xlogx.xlogy0(1 - v, 1 - mean_v) monitor = monitor.sum() / v.shape[0] def free_energy(v): #公式4,能量的計算公式 return -(v * bv).sum() - T.log(1 + T.exp(T.dot(v, W) + bh)).sum() cost = (free_energy(v) - free_energy(v_sample)) / v.shape[0] #代價函數 return v_sample, cost, monitor, updates def shared_normal(num_rows, num_cols, scale=1): '''Initialize a matrix shared variable with normally distributed elements.''' return theano.shared(numpy.random.normal( scale=scale, size=(num_rows, num_cols)).astype(theano.config.floatX)) def shared_zeros(*shape): '''Initialize a vector shared variable with zero elements.''' return theano.shared(numpy.zeros(shape, dtype=theano.config.floatX)) def build_rnnrbm(n_visible, n_hidden, n_hidden_recurrent): '''Construct a symbolic RNN-RBM and initialize parameters. n_visible : integer Number of visible units. n_hidden : integer Number of hidden units of the conditional RBMs. n_hidden_recurrent : integer Number of hidden units of the RNN. Return a (v, v_sample, cost, monitor, params, updates_train, v_t, updates_generate) tuple: v : Theano matrix Symbolic variable holding an input sequence (used during training) v_sample : Theano matrix Symbolic variable holding the negative particles for CD log-likelihood gradient estimation (used during training) cost : Theano scalar Expression whose gradient (considering v_sample constant) corresponds to the LL gradient of the RNN-RBM (used during training) monitor : Theano scalar Frame-level pseudo-likelihood (useful for monitoring during training) params : tuple of Theano shared variables The parameters of the model to be optimized during training. updates_train : dictionary of Theano variable -> Theano variable Update object that should be passed to theano.function when compiling the training function. v_t : Theano matrix Symbolic variable holding a generated sequence (used during sampling) updates_generate : dictionary of Theano variable -> Theano variable Update object that should be passed to theano.function when compiling the generation function.''' W = shared_normal(n_visible, n_hidden, 0.01) bv = shared_zeros(n_visible) bh = shared_zeros(n_hidden) Wuh = shared_normal(n_hidden_recurrent, n_hidden, 0.0001) Wuv = shared_normal(n_hidden_recurrent, n_visible, 0.0001) Wvu = shared_normal(n_visible, n_hidden_recurrent, 0.0001) Wuu = shared_normal(n_hidden_recurrent, n_hidden_recurrent, 0.0001) bu = shared_zeros(n_hidden_recurrent) params = W, bv, bh, Wuh, Wuv, Wvu, Wuu, bu # learned parameters as shared # variables v = T.matrix() # a training sequence u0 = T.zeros((n_hidden_recurrent,)) # initial value for the RNN hidden # units # If `v_t` is given, deterministic recurrence to compute the variable # biases bv_t, bh_t at each time step. If `v_t` is None, same recurrence # but with a separate Gibbs chain at each time step to sample (generate) # from the RNN-RBM. The resulting sample v_t is returned in order to be # passed down to the sequence history. # 若是給定t時刻的v和t-1時刻的u,那麼返回t時刻的u,bv,bh,含有25次Gibbs採樣過程 # 若是隻給定t-1時刻的u(即沒有t時刻的v),則表示的是由rbm來產生v了,因此這時候返回的是t時刻的v和u,以及 # 迭代過程當中輸入端的變換過程updates def recurrence(v_t, u_tm1): bv_t = bv + T.dot(u_tm1, Wuv) bh_t = bh + T.dot(u_tm1, Wuh) generate = v_t is None if generate: v_t, _, _, updates = build_rbm(T.zeros((n_visible,)), W, bv_t, #第一個參數應該是v,所以這裏的v是0 bh_t, k=25) u_t = T.tanh(bu + T.dot(v_t, Wvu) + T.dot(u_tm1, Wuu)) return ([v_t, u_t], updates) if generate else [u_t, bv_t, bh_t] # For training, the deterministic recurrence is used to compute all the # {bv_t, bh_t, 1 <= t <= T} given v. Conditional RBMs can then be trained # in batches using those parameters. (u_t, bv_t, bh_t), updates_train = theano.scan( #訓練rbm過程的符號表達式(每次只包括25步的Gibbs採樣) lambda v_t, u_tm1, *_: recurrence(v_t, u_tm1), sequences=v, outputs_info=[u0, None, None], non_sequences=params) v_sample, cost, monitor, updates_rbm = build_rbm(v, W, bv_t[:], bh_t[:], k=15) updates_train.update(updates_rbm) # symbolic loop for sequence generation (v_t, u_t), updates_generate = theano.scan( lambda u_tm1, *_: recurrence(None, u_tm1),#進行generate產生過程的符號表達式,迭代200次 outputs_info=[None, u0], non_sequences=params, n_steps=200) return (v, v_sample, cost, monitor, params, updates_train, v_t, #cost在build_rbm()中產生 updates_generate) class RnnRbm: #兩個功能,訓練RNN-RBM模型和用訓練好的RNN-RBM模型來產生樣本 '''Simple class to train an RNN-RBM from MIDI files and to generate sample sequences.''' def __init__(self, n_hidden=150, n_hidden_recurrent=100, lr=0.001, r=(21, 109), dt=0.3): '''Constructs and compiles Theano functions for training and sequence generation. n_hidden : integer Number of hidden units of the conditional RBMs. n_hidden_recurrent : integer Number of hidden units of the RNN. lr : float Learning rate r : (integer, integer) tuple Specifies the pitch range of the piano-roll in MIDI note numbers, including r[0] but not r[1], such that r[1]-r[0] is the number of visible units of the RBM at a given time step. The default (21, 109) corresponds to the full range of piano (88 notes). dt : float Sampling period when converting the MIDI files into piano-rolls, or equivalently the time difference between consecutive time steps.''' self.r = r self.dt = dt (v, v_sample, cost, monitor, params, updates_train, v_t, updates_generate) = build_rnnrbm(r[1] - r[0], n_hidden, #在該函數裏面有設置迭代次數等參數 n_hidden_recurrent) gradient = T.grad(cost, params, consider_constant=[v_sample]) updates_train.update(((p, p - lr * g) for p, g in zip(params, gradient))) #sgd算法,利用公式4的cost公式搞定8個參數的更新 self.train_function = theano.function([v], monitor, updates=updates_train) self.generate_function = theano.function([], v_t, #updates_generate步驟在build_rnnrbm()中產生,音樂的產生主要在那函數中 updates=updates_generate) def train(self, files, batch_size=100, num_epochs=200): '''Train the RNN-RBM via stochastic gradient descent (SGD) using MIDI files converted to piano-rolls. files : list of strings List of MIDI files that will be loaded as piano-rolls for training. batch_size : integer Training sequences will be split into subsequences of at most this size before applying the SGD updates. num_epochs : integer Number of epochs (pass over the training set) performed. The user can safely interrupt training with Ctrl+C at any time.''' assert len(files) > 0, 'Training set is empty!' \ ' (did you download the data files?)' dataset = [midiread(f, self.r, self.dt).piano_roll.astype(theano.config.floatX) for f in files] #讀取midi文件 try: for epoch in xrange(num_epochs): #訓練200次 numpy.random.shuffle(dataset) #將訓練樣本打亂 costs = [] for s, sequence in enumerate(dataset): #返回的s是序號,sequence是dataset對應序號下的值 for i in xrange(0, len(sequence), batch_size): cost = self.train_function(sequence[i:i + batch_size]) #train_function在init()函數中 costs.append(cost) print 'Epoch %i/%i' % (epoch + 1, num_epochs), print numpy.mean(costs) sys.stdout.flush() except KeyboardInterrupt: print 'Interrupted by user.' def generate(self, filename, show=True): '''Generate a sample sequence, plot the resulting piano-roll and save it as a MIDI file. filename : string A MIDI file will be created at this location. show : boolean If True, a piano-roll of the generated sequence will be shown.''' piano_roll = self.generate_function() #直接生成piano roll文件 midiwrite(filename, piano_roll, self.r, self.dt)#將piano_roll文件轉換成midi文件並保存 if show: extent = (0, self.dt * len(piano_roll)) + self.r pylab.figure() pylab.imshow(piano_roll.T, origin='lower', aspect='auto', interpolation='nearest', cmap=pylab.cm.gray_r, extent=extent) pylab.xlabel('time (s)') pylab.ylabel('MIDI note number') pylab.title('generated piano-roll') def test_rnnrbm(batch_size=100, num_epochs=200): model = RnnRbm() #os.path.dirname(__file__)爲得到當前文件的目錄,os.path.split(path)是將path按照最後一個斜線分紅父和子的部分 re = os.path.join(os.path.split(os.path.dirname(__file__))[0], #該代碼完成的功能是,找到當前文件的上級目錄下的/data/Nottinghan/train/*.mid文件 'data', 'Nottingham', 'train', '*.mid') #re獲得該目錄下的全部.mid文件 model.train(glob.glob(re),#glob.glob()只是將文件路徑名等弄成linux的格式 batch_size=batch_size, num_epochs=num_epochs) return model if __name__ == '__main__': model = test_rnnrbm() #該函數主要用來訓練RNN-RBM參數 model.generate('sample1.mid') #產生數據的v_t初始化都是0 model.generate('sample2.mid') pylab.show()
實驗總結:
關於bp算法:因爲RNN-RBM中對loss函數求導用到了BPTT(back propgation through time)算法:BP算法加入了時間維度。爲了加深對BP算法的理解,從新看了一遍推導過程。bp算法的推導過程是主要是由求導中的鏈式法則獲得的。具體算法可參考Martin T.Hagan 的《神經網絡設計》第11章(這本書寫得不錯,翻譯得也還能夠)。其思想大概爲:損失函數F對第m層wij(鏈接第m層第i個節點和第m-1層第j個節點之間的權值)的導數等於F對第m層第i個節點輸入值的導數,乘上該輸入值對wij的導數(很容易知道這個導數等於第m-1層第j個節點的輸出值)。而F對第m層第i個節點輸入值的導數值又等於F對第m+1層輸入值的導數(這時須要考慮第m+1中全部的節點)乘以第m+1層輸入值對第m層第i個輸入值的導數(這個導數值很容易由激發函數的導函數求得),而且咱們一般說的bp算法是偏差方向傳播,這裏的第m層偏差指的就是F對第m層輸入值的導數。由此可知,能夠從最後一層依次往前求解,這就是bp算法的思想,本質上是高數裏面的鏈式求導法則。
另外,實驗中關於樂理對應的具體細節沒有深究。
參考資料:
http://deeplearning.net/tutorial/rnnrbm.html(教程主頁)
《神經網絡設計》,Martin T.Hagan.
http://www.cse.unsw.edu.au/~waleed/phd/html/node37.html(RNN圖片來源1)
Recurrent Neural Networks in Ruby.(RNN圖片來源2)
Learning Recurrent Neural Networks with Hessian-Free Optimization, James Martens,Ilya Sutskever.
Modeling Temporal Dependencies in High-Dimensional Sequences: Application to Polyphonic Music Generation and Transcription, Nicolas Boulanger-Lewandowski,Yoshua Bengio,Pascal Vincent.
http://www-etud.iro.umontreal.ca/~boulanni/icml2012(rnn-rbm項目主頁)