JavaShuo
欄目
標籤
Style Transfer for Anime Sketches with Enhanced Residual U-net and Auxiliary Classifier GAN
時間 2020-12-29
原文
原文鏈接
網絡結構 本文的GAN網絡結構爲: 生成網絡的輸入爲需要風格轉換的圖像即input,以及風格特徵.採用VGG16/19的fc1層,提取風格圖像的特徵,風格特徵爲4096維的向量. 生成網絡結構和目標函數 文章試驗發現,如果u-net可以使用底層的網絡學習到特徵,那麼高層的網絡就不會去學習,如圖4所示,u-net網絡的輸入輸出都爲同一張圖像,也就是實現複製圖像的功能.由於輸入輸出是相同的,損失函數會
>>阅读原文<<
相關文章
1.
[Style Transfer]——GANs for Medical Image Analysis
2.
Style transfer GAN
3.
[Style Transfer]——Perceptual Losses for Real-Time Style Transfer and Super-Resolution
4.
Unsupervised domain adaptation with residual transfer networks(NIPS 2016)
5.
Unsupervised Domain Adaptation with Residual Transfer Networks(2017)
6.
Perceptual Losses for Real-Time Style Transfer and Super-Resolution
7.
[Style Transfer]——Adversarial Stain Transfer for Histopathology Image Analysis
8.
[Style Transfer]——Neural Style Transfer: A Review
9.
SR-Enhanced Deep Residual Networks for Single Image Super-Resolution
10.
Arbitrary Style Transfer with Deep Feature Reshuffle
更多相關文章...
•
ASP Transfer 方法
-
ASP 教程
•
ASP.NET Style 控件
-
ASP.NET 教程
•
RxJava操作符(七)Conditional and Boolean
•
算法總結-股票買賣
相關標籤/搜索
classifier
residual
auxiliary
anime
enhanced
transfer
gan
unet
style
concurrenthashmap#transfer
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
windows下配置opencv
2.
HED神經網
3.
win 10+ annaconda+opencv
4.
ORB-SLAM3系列-多地圖管理
5.
opencv報錯——(mtype == CV_8U || mtype == CV_8S)
6.
OpenCV計算機視覺學習(9)——圖像直方圖 & 直方圖均衡化
7.
【超詳細】深度學習原理與算法第1篇---前饋神經網絡,感知機,BP神經網絡
8.
Python數據預處理
9.
ArcGIS網絡概述
10.
數據清洗(三)------檢查數據邏輯錯誤
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
[Style Transfer]——GANs for Medical Image Analysis
2.
Style transfer GAN
3.
[Style Transfer]——Perceptual Losses for Real-Time Style Transfer and Super-Resolution
4.
Unsupervised domain adaptation with residual transfer networks(NIPS 2016)
5.
Unsupervised Domain Adaptation with Residual Transfer Networks(2017)
6.
Perceptual Losses for Real-Time Style Transfer and Super-Resolution
7.
[Style Transfer]——Adversarial Stain Transfer for Histopathology Image Analysis
8.
[Style Transfer]——Neural Style Transfer: A Review
9.
SR-Enhanced Deep Residual Networks for Single Image Super-Resolution
10.
Arbitrary Style Transfer with Deep Feature Reshuffle
>>更多相關文章<<