在CAP理論與MongoDB一致性、可用性的一些思考一文中提到,MongoDB提供了一些選項,如Read Preference、Read Concern、Write Concern,對MongoDB的一致性、可用性、可靠性(durability)、性能會有較大的影響。與Read Concern、Write Concern不一樣的是,Read Preference基本上徹底由MongoDb Driver實現,所以,本文經過PyMongo來看看Read Preference具體是如何實現的。html
本文分析的PyMongo版本是PyMongo3.6,該版本兼容MongoDB3.6及如下的MongoDB。node
本文地址:http://www.javashuo.com/article/p-cwetbpre-bb.htmlpython
Read preference describes how MongoDB clients route read operations to the members of a replica set.git
Read Prefenrece決定了使用複製集(replica set)時,讀操做路由到哪一個mongod節點,若是使用Sharded Cluster,路由選擇由Mongos決定,若是直接使用replica set,那麼路由選擇由driver決定。以下圖所示:github
MongoDB提供瞭如下Read Preference Mode:mongodb
這五種模式還受到maxStalenessSeconds和tagsets的影響。數據庫
不一樣的read Preference mode適合不一樣的應用場景,若是數據的一致性很重要,好比必須保證read-after-write一致性,那麼就須要從primary讀,由於secondary的數據有必定的滯後。若是能接受必定程度的stale data,那麼從secondary讀數據能夠減輕primary的壓力,且在primary failover期間也能提供服務,可用性更高。若是對延時敏感,那麼適合nearest。另外,經過tagsets,還能夠有更豐富的定製化讀取策略,好比指定從某些datacenter讀取。api
首先給出pymongo中與read preference相關的類,方便後面的分析。網絡
上圖中實線箭頭表示強引用(複合),虛線箭頭表示弱引用(聚合)app
PyMongo的文檔給出瞭如何鏈接到複製集:指定複製集的名字,以及一個或多個該複製集內的節點。如:
MongoClient('localhost', replicaset='foo')
上述操做是non-blocking,當即返回,經過後臺線程去鏈接指定節點,PyMongo鏈接到節點後,會從mongod節點獲取到複製集內其餘節點的信息,而後再鏈接到複製集內的其餘節點。
from time import sleep
c = MongoClient('localhost', replicaset='foo'); print(c.nodes); sleep(0.1); print(c.nodes)
frozenset([])
frozenset([(u'localhost', 27019), (u'localhost', 27017), (u'localhost', 27018)])
能夠看到,剛初始化MongoClient實例時,並無鏈接到任何節點(c.nodes)爲空;過了一段時間,再查看,那麼會發現已經連上了複製集內的三個節點。
那麼問題來了,建立MongoClient後,還沒有鏈接到複製集節點以前,可否當即操做數據庫?
If you need to do any operation with a MongoClient, such as a find() or an insert_one(), the client waits to discover a suitable member before it attempts the operation.
經過後續的代碼分析能夠看到,會經過一個條件變量(threading.Condition)去協調。
上面提到,初始化MongoClient對象的時候,會經過指定的mognod節點去發現複製集內的其餘節點,這個就是經過monitor.Monitor
來實現的。從上面的類圖能夠看到,每個server(與一個mongod節點對應)都有一個monitor。Monitor的做用在於:
Monitor會啓動一個後臺線程 PeriodExecutor
,定時(默認10s)經過socket鏈接Pool
給對應的mongod節點發送 ismaster 消息。核心代碼(略做調整)以下
def _run(self): self._server_description = self._check_with_retry() self._topology.on_change(self._server_description) def _check_with_retry(self): address = self._server_description.address response, round_trip_time = self._check_with_socket( sock_info, metadata=metadata) self._avg_round_trip_time.add_sample(round_trip_time) # 更新rtt sd = ServerDescription( address=address, ismaster=response, round_trip_time=self._avg_round_trip_time.get()) return sd def _check_with_socket(self, sock_info, metadata=None): """Return (IsMaster, round_trip_time). Can raise ConnectionFailure or OperationFailure. """ cmd = SON([('ismaster', 1)]) if metadata is not None: cmd['client'] = metadata if self._server_description.max_wire_version >= 6: cluster_time = self._topology.max_cluster_time() if cluster_time is not None: cmd['$clusterTime'] = cluster_time start = _time() request_id, msg, max_doc_size = message.query( 0, 'admin.$cmd', 0, -1, cmd, None, DEFAULT_CODEC_OPTIONS) # TODO: use sock_info.command() sock_info.send_message(msg, max_doc_size) reply = sock_info.receive_message(request_id) return IsMaster(reply.command_response()), _time() - start
類IsMaster
是對ismaster command reponse的封裝,比較核心的屬性包括:
當某個server的monitor獲取到了在server對應的mongod上的複製集信息信息時,調用Tolopogy.on_change
更新複製集的拓撲信息:
def on_change(self, server_description): """Process a new ServerDescription after an ismaster call completes.""" if self._description.has_server(server_description.address): self._description = updated_topology_description( self._description, server_description) self._update_servers() # 根據信息,鏈接到新增的節點,移除(斷開)已經不存在的節點 self._receive_cluster_time_no_lock( server_description.cluster_time) # Wake waiters in select_servers(). self._condition.notify_all()
核心在updated_topology_description
, 根據本地記錄的topology信息,以及收到的server_description(來自IsMaster- ismaster command response),來調整本地的topology信息。以一種狀況爲例:收到一個ismaster command response,對方自稱本身是primary,無論當前topology有沒有primary,都會進入調用如下函數
def _update_rs_from_primary( sds, replica_set_name, server_description, max_set_version, max_election_id): """Update topology description from a primary's ismaster response. Pass in a dict of ServerDescriptions, current replica set name, the ServerDescription we are processing, and the TopologyDescription's max_set_version and max_election_id if any. Returns (new topology type, new replica_set_name, new max_set_version, new max_election_id). """ if replica_set_name is None: replica_set_name = server_description.replica_set_name elif replica_set_name != server_description.replica_set_name: # 不是來自同一個複製集 # We found a primary but it doesn't have the replica_set_name # provided by the user. sds.pop(server_description.address) return (_check_has_primary(sds), replica_set_name, max_set_version, max_election_id) max_election_tuple = max_set_version, max_election_id if None not in server_description.election_tuple: if (None not in max_election_tuple and max_election_tuple > server_description.election_tuple): # 節點是priamry,但比topology中記錄的舊 # Stale primary, set to type Unknown. address = server_description.address sds[address] = ServerDescription(address) # 傳入空dict,則server-type爲UnKnown return (_check_has_primary(sds), replica_set_name, max_set_version, max_election_id) max_election_id = server_description.election_id if (server_description.set_version is not None and # 節點的config version版本更高 (max_set_version is None or server_description.set_version > max_set_version)): max_set_version = server_description.set_version # We've heard from the primary. Is it the same primary as before? for server in sds.values(): if (server.server_type is SERVER_TYPE.RSPrimary and server.address != server_description.address): # Reset old primary's type to Unknown. sds[server.address] = ServerDescription(server.address) # There can be only one prior primary. break # Discover new hosts from this primary's response. for new_address in server_description.all_hosts: if new_address not in sds: sds[new_address] = ServerDescription(new_address) # Remove hosts not in the response. for addr in set(sds) - server_description.all_hosts: sds.pop(addr) # If the host list differs from the seed list, we may not have a primary # after all. return (_check_has_primary(sds), replica_set_name, max_set_version, max_election_id)
注意看docstring中的Returns,都是返回新的複製集信息
那麼整個函數從上往下檢查
PyMongo關於複製集的狀態都來自於全部節點的ismaster消息,Source of Truth在於複製集,並且這個Truth來自於majority 節點。所以,某個節點返回給driver的信息多是過時的、錯誤的,driver經過有限的信息判斷複製集的狀態,若是判斷失誤,好比將寫操做發到了stale primary上,那麼會在複製集上再次判斷,保證正確性。
前面詳細介紹了PyMongo是如何更新複製集的信息,那麼這一部分來看看基於拓撲信息具體是如何根據read preference路由到某個節點上的。
咱們從Collection.find出發,一路跟蹤, 會調用MongoClient._send_message_with_response
def _send_message_with_response(self, operation, read_preference=None, exhaust=False, address=None): topology = self._get_topology() if address: server = topology.select_server_by_address(address) if not server: raise AutoReconnect('server %s:%d no longer available' % address) else: selector = read_preference or writable_server_selector server = topology.select_server(selector) return self._reset_on_error( server, server.send_message_with_response, operation, set_slave_ok, self.__all_credentials, self._event_listeners, exhaust)
代碼很清晰,根據指定的address或者read_preference, 選擇出server,而後經過server發請求,等待回覆。topology.select_server一路調用到下面這個函數
def _select_servers_loop(self, selector, timeout, address): """select_servers() guts. Hold the lock when calling this.""" now = _time() end_time = now + timeout server_descriptions = self._description.apply_selector( # _description是TopologyDescription selector, address) while not server_descriptions: # No suitable servers. if timeout == 0 or now > end_time: raise ServerSelectionTimeoutError( self._error_message(selector)) self._ensure_opened() self._request_check_all() # Release the lock and wait for the topology description to # change, or for a timeout. We won't miss any changes that # came after our most recent apply_selector call, since we've # held the lock until now. self._condition.wait(common.MIN_HEARTBEAT_INTERVAL) # Conditional.wait self._description.check_compatible() now = _time() server_descriptions = self._description.apply_selector( selector, address) self._description.check_compatible() return server_descriptions
能夠看到,不必定能一次選出來,若是選不出server,意味着此時尚未鏈接到足夠多的mongod節點,那麼等待一段時間(_condition.wait
)重試。在上面Topology.on_change 能夠看到,會調用_condition.notify_all
喚醒。
def apply_selector(self, selector, address): def apply_local_threshold(selection): if not selection: return [] settings = self._topology_settings # Round trip time in seconds. fastest = min( s.round_trip_time for s in selection.server_descriptions) threshold = settings.local_threshold_ms / 1000.0 return [s for s in selection.server_descriptions if (s.round_trip_time - fastest) <= threshold] # 省略了無關代碼... return apply_local_threshold( selector(Selection.from_topology_description(self)))
上面selector就是read_preference._ServerMode
的某一個子類,以Nearest
爲例
class Nearest(_ServerMode): def __call__(self, selection): """Apply this read preference to Selection.""" return member_with_tags_server_selector( self.tag_sets, max_staleness_selectors.select( self.max_staleness, selection))
首先要受到maxStalenessSeconds的約束,而後再用tagsets過濾一遍,這裏只關注前者。
關於maxStalenessSeconds
The read preference maxStalenessSeconds option lets you specify a maximum replication lag, or 「staleness」, for reads from secondaries. When a secondary’s estimated staleness exceeds maxStalenessSeconds, the client stops using it for read operations.
怎麼計算的,若是節點有primary,則調用下面這個函數
def _with_primary(max_staleness, selection): """Apply max_staleness, in seconds, to a Selection with a known primary.""" primary = selection.primary sds = [] for s in selection.server_descriptions: if s.server_type == SERVER_TYPE.RSSecondary: # See max-staleness.rst for explanation of this formula. staleness = ( (s.last_update_time - s.last_write_date) - (primary.last_update_time - primary.last_write_date) + selection.heartbeat_frequency) if staleness <= max_staleness: sds.append(s) else: sds.append(s) return selection.with_server_descriptions(sds)
上面的代碼用到了IsMaster的last_write_date屬性,正是用這個屬性來判斷staleness。
公式的解釋可參考max-staleness.rst
我的以爲能夠這麼理解:假設網絡延時一致,若是在同一時刻收到心跳回復,那麼只用P.lastWriteDate - S.lastWriteDate就好了,但心跳時間不一樣,因此得算上時間差。我會寫成(P.lastWriteDate - S.lastWriteDate) + (S.lastUpdateTime - P.lastUpdateTime) 。加上 心跳間隔是基於悲觀假設,若是剛心跳完以後secondary就中止複製,那麼在下一次心跳以前最多的stale程度就得加上 心跳間隔。
從代碼能夠看到Nearest找出了全部可讀的節點,而後經過apply_local_threshold
函數來刷選出最近的。