JavaShuo
欄目
標籤
ROBUSTNESS TO ADVERSARIAL EXAMPLES THROUGH AN ENSEMBLE OF SPECIALISTS
時間 2020-12-30
標籤
對抗攻擊
欄目
系統網絡
简体版
原文
原文鏈接
1.利用FGSM方法得到模型的混淆矩陣: 根據混淆矩陣將數據分爲2K+1個子集,在每個子集上訓練分類器。 2.僞代碼如下: 2k個專家子集和一個訓練10分類的cnn ensemble 3.實驗考慮三種模型 單個CNN,簡單集成CNN,specialists +1,其中每個卷積網都是(32+32+64+全連接+softmax。 投票機制無法使用通才來激活相關專家,因爲通常這會遭到對手的欺騙。在算法1
>>阅读原文<<
相關文章
1.
Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks
2.
Certified Robustness to Adversarial Examples with Differential Privacy
3.
[paper]IMPROVING ADVERSARIAL ROBUSTNESS REQUIRES REVISITING MISCLASSIFIED EXAMPLES
4.
Paper Review: Adversarial Examples
5.
《Detecting Adversarial Examples through Image Transformation》和CW attack的閱讀筆記
6.
Explaining and Harnessing Adversarial Examples
7.
SPATIALLY TRANSFORMED ADVERSARIAL EXAMPLES
8.
[advGAN]Generating Adversarial Examples With Adversarial Networks
9.
Generating Adversarial Examples with Adversarial Networks
10.
Certified Adversarial Robustness via Randomized Smoothing
更多相關文章...
•
XPath Examples
-
XPath 教程
•
XSLT
元素
-
XSLT 教程
•
使用Rxjava計算圓周率
•
爲了進字節跳動,我精選了29道Java經典算法題,帶詳細講解
相關標籤/搜索
examples
adversarial
robustness
ensemble
for...of
for..of
to@8
to......443
dp of dp
the way to go
系統網絡
Spring教程
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
【Java8新特性_尚硅谷】P1_P5
2.
SpringSecurity 基礎應用
3.
SlowFast Networks for Video Recognition
4.
074-enable-right-click
5.
WindowFocusListener窗體焦點監聽器
6.
DNS部署(二)DNS的解析(正向、反向、雙向、郵件解析及域名轉換)
7.
Java基礎(十九)集合(1)集合中主要接口和實現類
8.
瀏覽器工作原理學習筆記
9.
chrome瀏覽器構架學習筆記
10.
eclipse引用sun.misc開頭的類
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks
2.
Certified Robustness to Adversarial Examples with Differential Privacy
3.
[paper]IMPROVING ADVERSARIAL ROBUSTNESS REQUIRES REVISITING MISCLASSIFIED EXAMPLES
4.
Paper Review: Adversarial Examples
5.
《Detecting Adversarial Examples through Image Transformation》和CW attack的閱讀筆記
6.
Explaining and Harnessing Adversarial Examples
7.
SPATIALLY TRANSFORMED ADVERSARIAL EXAMPLES
8.
[advGAN]Generating Adversarial Examples With Adversarial Networks
9.
Generating Adversarial Examples with Adversarial Networks
10.
Certified Adversarial Robustness via Randomized Smoothing
>>更多相關文章<<