JavaShuo
欄目
標籤
[paper]IMPROVING ADVERSARIAL ROBUSTNESS REQUIRES REVISITING MISCLASSIFIED EXAMPLES
時間 2020-12-29
標籤
AEs
機器學習
深度學習
人工智能
欄目
系統安全
简体版
原文
原文鏈接
對抗訓練是當前最有效的防禦措施,經常被公式化爲最小-最大優化問題。 where n is the number of training examples and l l l(·) is the classification loss, such as the commonly used cross-entropy (CE) loss.Recently, adversarial training wi
>>阅读原文<<
相關文章
1.
Certified Robustness to Adversarial Examples with Differential Privacy
2.
ROBUSTNESS TO ADVERSARIAL EXAMPLES THROUGH AN ENSEMBLE OF SPECIALISTS
3.
SPATIALLY TRANSFORMED ADVERSARIAL EXAMPLES
4.
Paper Review: Adversarial Examples
5.
[advGAN]Generating Adversarial Examples With Adversarial Networks
6.
Generating Adversarial Examples with Adversarial Networks
7.
Certified Adversarial Robustness via Randomized Smoothing
8.
[paper]SPATIALLY TRANSFORMED ADVERSARIAL EXAMPLES
9.
Explaining and Harnessing Adversarial Examples
10.
CS231n Lecture 16 | Adversarial Examples and Adversarial Training
更多相關文章...
•
XPath Examples
-
XPath 教程
•
Rust 註釋
-
RUST 教程
相關標籤/搜索
examples
adversarial
requires
revisiting
robustness
系統安全
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
resiprocate 之repro使用
2.
Ubuntu配置Github並且新建倉庫push代碼,從已有倉庫clone代碼,並且push
3.
設計模式9——模板方法模式
4.
avue crud form組件的快速配置使用方法詳細講解
5.
python基礎B
6.
從零開始···將工程上傳到github
7.
Eclipse插件篇
8.
Oracle網絡服務 獨立監聽的配置
9.
php7 fmp模式
10.
第5章 Linux文件及目錄管理命令基礎
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
Certified Robustness to Adversarial Examples with Differential Privacy
2.
ROBUSTNESS TO ADVERSARIAL EXAMPLES THROUGH AN ENSEMBLE OF SPECIALISTS
3.
SPATIALLY TRANSFORMED ADVERSARIAL EXAMPLES
4.
Paper Review: Adversarial Examples
5.
[advGAN]Generating Adversarial Examples With Adversarial Networks
6.
Generating Adversarial Examples with Adversarial Networks
7.
Certified Adversarial Robustness via Randomized Smoothing
8.
[paper]SPATIALLY TRANSFORMED ADVERSARIAL EXAMPLES
9.
Explaining and Harnessing Adversarial Examples
10.
CS231n Lecture 16 | Adversarial Examples and Adversarial Training
>>更多相關文章<<