Java實現二叉樹先序,中序,後序遍歷

如下是我要解析的一個二叉樹的模型形狀node

 

接下來廢話很少直接上代碼this

一種是用遞歸的方法,另外一種是用堆棧的方法:spa

首先建立一棵樹:code

  

public class Node {  
    private int data;  
    private Node leftNode;  
    private Node rightNode;  
    public Node(int data, Node leftNode, Node rightNode){  
        this.data = data;  
        this.leftNode = leftNode;  
        this.rightNode = rightNode;  
    }  
  
    public int getData() {  
        return data;  
    }  
    public void setData(int data) {  
        this.data = data;  
    }  
    public Node getLeftNode() {  
        return leftNode;  
    }  
    public void setLeftNode(Node leftNode) {  
        this.leftNode = leftNode;  
    }  
    public Node getRightNode() {  
        return rightNode;  
    }  
    public void setRightNode(Node rightNode) {  
        this.rightNode = rightNode;  
    }  
}  

 

遞歸:blog

public class BinaryTree {  
    /** 
     * @author yaobo
     * 二叉樹的先序中序後序排序 
     */  
    public Node init() {//注意必須逆序創建,先創建子節點,再逆序往上創建,由於非葉子結點會使用到下面的節點,而初始化是按順序初始化的,不逆序創建會報錯  
        Node J = new Node(8, null, null);  
        Node H = new Node(4, null, null);  
        Node G = new Node(2, null, null);  
        Node F = new Node(7, null, J);  
        Node E = new Node(5, H, null);  
        Node D = new Node(1, null, G);  
        Node C = new Node(9, F, null);  
        Node B = new Node(3, D, E);  
        Node A = new Node(6, B, C);  
        return A;   //返回根節點  
    }
    
    public void printNode(Node node){  
        System.out.print(node.getData());  
    }  
    public void theFirstTraversal(Node root) {  //先序遍歷  
        printNode(root);  
        if (root.getLeftNode() != null) {  //使用遞歸進行遍歷左孩子  
            theFirstTraversal(root.getLeftNode());  
        }  
        if (root.getRightNode() != null) {  //遞歸遍歷右孩子  
            theFirstTraversal(root.getRightNode());  
        }  
    }  
    public void theInOrderTraversal(Node root) {  //中序遍歷  
        if (root.getLeftNode() != null) {  
            theInOrderTraversal(root.getLeftNode());  
        }  
        printNode(root);  
        if (root.getRightNode() != null) {  
            theInOrderTraversal(root.getRightNode());  
        }  
    }
    
    
    public void thePostOrderTraversal(Node root) {  //後序遍歷  
        if (root.getLeftNode() != null) {  
            thePostOrderTraversal(root.getLeftNode());  
        }  
        if(root.getRightNode() != null) {  
            thePostOrderTraversal(root.getRightNode());  
        }  
        printNode(root);  
    }  
      
    public static void main(String[] args) {  
        BinaryTree tree = new BinaryTree();  
        Node root = tree.init();  
        System.out.println("先序遍歷");  
        tree.theFirstTraversal(root);  
        System.out.println("");  
        System.out.println("中序遍歷");  
        tree.theInOrderTraversal(root);  
        System.out.println("");  
        System.out.println("後序遍歷");  
        tree.thePostOrderTraversal(root);  
        System.out.println("");  
    }  
}  

 

堆棧:排序

 

public class BinaryTree1 { 
     public Node init() {//注意必須逆序創建,先創建子節點,再逆序往上創建,由於非葉子結點會使用到下面的節點,而初始化是按順序初始化的,不逆序創建會報錯  
            Node J = new Node(8, null, null);  
            Node H = new Node(4, null, null);  
            Node G = new Node(2, null, null);  
            Node F = new Node(7, null, J);  
            Node E = new Node(5, H, null);  
            Node D = new Node(1, null, G);  
            Node C = new Node(9, F, null);  
            Node B = new Node(3, D, E);  
            Node A = new Node(6, B, C);  
            return A;   //返回根節點  
        } 
    
    public void printNode(Node node){  
        System.out.print(node.getData());  
    }
    
    
    public void theFirstTraversal_Stack(Node root) {  //先序遍歷  
        Stack<Node> stack = new Stack<Node>();  
        Node node = root;  
        while (node != null || stack.size() > 0) {  //將全部左孩子壓棧  
            if (node != null) {   //壓棧以前先訪問  
                printNode(node);  
                stack.push(node);  
                node = node.getLeftNode();  
            } else {  
                node = stack.pop();  
                node = node.getRightNode();  
            }  
        }  
    }  
      
    public void theInOrderTraversal_Stack(Node root) {  //中序遍歷  
        Stack<Node> stack = new Stack<Node>();  
        Node node = root;  
        while (node != null || stack.size() > 0) {  
            if (node != null) {  
                stack.push(node);   //直接壓棧  
                node = node.getLeftNode();  
            } else {  
                node = stack.pop(); //出棧並訪問  
                printNode(node);  
                node = node.getRightNode(); 
            }  
        }  
    }  
      
    public void thePostOrderTraversal_Stack(Node root) {   //後序遍歷  
        Stack<Node> stack = new Stack<Node>();  
        Stack<Node> output = new Stack<Node>();//構造一箇中間棧來存儲逆後序遍歷的結果  
        Node node = root;  
        while (node != null || stack.size() > 0) {  
            if (node != null) {  
                output.push(node);  
                stack.push(node);                 
                node = node.getRightNode();  
            } else {  
                node = stack.pop();               
                node = node.getLeftNode();
            }  
        }  
        System.out.println(output.size());
        while (output.size() > 0) {
            
            printNode(output.pop());  
        }  
    }
    
    public static void main(String[] args) {  
        BinaryTree1 tree = new BinaryTree1();  
        Node root = tree.init();  
        System.out.println("先序遍歷");  
        tree.theFirstTraversal_Stack(root);  
        System.out.println("");  
        System.out.println("中序遍歷");  
        tree.theInOrderTraversal_Stack(root);  
        System.out.println("");  
        System.out.println("後序遍歷");  
        tree.thePostOrderTraversal_Stack(root);  
        System.out.println("");  
    }
}
相關文章
相關標籤/搜索