Kubernetes 包含一個體驗性的功能,支持 AMD和NVIDIA GPUs 跨節點調度。對 NVIDIA GPUs 支持從 v1.6開始,而後通過幾回不兼容的疊代修改,對AMD GPUs 的支持從 v1.9 開始,經過 device plugin提供。node
本文描述了用戶在不一樣版本的kubernetes使用GPUs的方法及其當前版本的限制。git
從1.8開始, 建議調用 GPUs 的方法是經過使用 device plugins。github
爲了啓用 GPU支持,在1.10以前, 該DevicePlugins
feature gate 須要經過系統設置來激活: --feature-gates="DevicePlugins=true"
. 但在 1.10及之後,再也不須要這一設置。docker
您還須要安裝 GPU drivers到各個節點,驅動和device plugin都由相應的GPU生產廠家提供 (AMD, NVIDIA)。shell
當上述條件知足時, Kubernetes 服務將提供名稱爲 nvidia.com/gpu
和 amd.com/gpu
做爲可調度的資源。ubuntu
You can consume these GPUs from your containers by requesting <vendor>.com/gpu
just like you request cpu
or memory
. However, there are some limitations in how you specify the resource requirements when using GPUs:api
limits
section, which means:
limits
without specifying requests
because Kubernetes will use the limit as the request value by default.limits
and requests
but these two values must be equal.requests
without specifying limits
.Here’s an example:app
apiVersion: v1 kind: Pod metadata: name: cuda-vector-add spec: restartPolicy: OnFailure containers: - name: cuda-vector-add # https://github.com/kubernetes/kubernetes/blob/v1.7.11/test/images/nvidia-cuda/Dockerfile image: "k8s.gcr.io/cuda-vector-add:v0.1" resources: limits: nvidia.com/gpu: 1 # requesting 1 GPU
The official AMD GPU device plugin has the following requirements:機器學習
To deploy the AMD device plugin once your cluster is running and the above requirements are satisfied:學習
# For Kubernetes v1.9 kubectl create -f https://raw.githubusercontent.com/RadeonOpenCompute/k8s-device-plugin/r1.9/k8s-ds-amdgpu-dp.yaml # For Kubernetes v1.10 kubectl create -f https://raw.githubusercontent.com/RadeonOpenCompute/k8s-device-plugin/r1.10/k8s-ds-amdgpu-dp.yaml
Report issues with this device plugin to RadeonOpenCompute/k8s-device-plugin.
There are currently two device plugin implementations for NVIDIA GPUs:
The official NVIDIA GPU device plugin has the following requirements:
To deploy the NVIDIA device plugin once your cluster is running and the above requirements are satisfied:
# For Kubernetes v1.8 kubectl create -f https://raw.githubusercontent.com/NVIDIA/k8s-device-plugin/v1.8/nvidia-device-plugin.yml # For Kubernetes v1.9 kubectl create -f https://raw.githubusercontent.com/NVIDIA/k8s-device-plugin/v1.9/nvidia-device-plugin.yml
Report issues with this device plugin to NVIDIA/k8s-device-plugin.
The NVIDIA GPU device plugin used by GCE doesn’t require using nvidia-docker and should work with any container runtime that is compatible with the Kubernetes Container Runtime Interface (CRI). It’s tested on Container-Optimized OS and has experimental code for Ubuntu from 1.9 onwards.
On your 1.12 cluster, you can use the following commands to install the NVIDIA drivers and device plugin:
# Install NVIDIA drivers on Container-Optimized OS: kubectl create -f https://raw.githubusercontent.com/GoogleCloudPlatform/container-engine-accelerators/stable/daemonset.yaml # Install NVIDIA drivers on Ubuntu (experimental): kubectl create -f https://raw.githubusercontent.com/GoogleCloudPlatform/container-engine-accelerators/stable/nvidia-driver-installer/ubuntu/daemonset.yaml # Install the device plugin: kubectl create -f https://raw.githubusercontent.com/kubernetes/kubernetes/release-1.12/cluster/addons/device-plugins/nvidia-gpu/daemonset.yaml
Report issues with this device plugin and installation method to GoogleCloudPlatform/container-engine-accelerators.
Instructions for using NVIDIA GPUs on GKE are here
If different nodes in your cluster have different types of NVIDIA GPUs, then you can use Node Labels and Node Selectors to schedule pods to appropriate nodes.
For example:
# Label your nodes with the accelerator type they have. kubectl label nodes <node-with-k80> accelerator=nvidia-tesla-k80 kubectl label nodes <node-with-p100> accelerator=nvidia-tesla-p100
Specify the GPU type in the pod spec:
apiVersion: v1 kind: Pod metadata: name: cuda-vector-add spec: restartPolicy: OnFailure containers: - name: cuda-vector-add # https://github.com/kubernetes/kubernetes/blob/v1.7.11/test/images/nvidia-cuda/Dockerfile image: "k8s.gcr.io/cuda-vector-add:v0.1" resources: limits: nvidia.com/gpu: 1 nodeSelector: accelerator: nvidia-tesla-p100 # or nvidia-tesla-k80 etc.
This will ensure that the pod will be scheduled to a node that has the GPU type you specified.