機器學習 | 詳解GBDT在分類場景中的應用原理與公式推導

本文始發於個人公衆號:TechFlow,原創不易,求個關注 今天是機器學習專題的第31篇文章,我們一起繼續來聊聊GBDT模型。 在上一篇文章當中,我們學習了GBDT這個模型在迴歸問題當中的原理。GBDT最大的特點就是對於損失函數的降低不是通過調整模型當中已有的參數實現的,若是通過訓練新的CART決策樹來逼近的。也就是說是通過增加參數而不是調整參數來逼近損失函數最低點。 如果對於這部分不是很理解的話
相關文章
相關標籤/搜索