Kubernetes源碼分析之kube-scheduler

本節開始主要分析kubernetes源碼部分,版本基於當前最新的1.13.4。node

啓動分析

Kubernetes基礎組件的入口均在cmd目錄下,kube-schduler入口在scheduler.go下,如圖 git

kubernetes全部的組件啓動採用的均是 command的形式,引用的是 spf13類庫
經過將配置文件轉化成 command的形式,調用 Execute方法執行定義的 Run方法
進入 runCommand方法,經過完成配置的初始化,調用 Run方法,進一步啓動。

Run方法分析

Run方法主要作了如下工做:
一、判斷是否須要添加VolumeScheduling新特性;
二、初始化調度參數的相關結構體;
三、配置準備事件廣播;
四、健康檢查相關配置;
五、Metrics相關配置;
六、啓動全部的Informer(kubernetes主要就是經過InformerWorkqueue機制監聽事件的變化);
七、判斷是否須要LeaderElection,決定最終的啓動。github

調度接口

最終的調度接口進入的是pkg下的scheduler.go文件,經過啓動單獨的協程處理調度工做。 算法

scheduleOne方法分析

scheduleOne,顧名思義,每次調度一個Pod,總體文件以下
api

// scheduleOne does the entire scheduling workflow for a single pod. It is serialized on the scheduling algorithm's host fitting.
func (sched *Scheduler) scheduleOne() {
	// 1.從隊列中取出待調度的Pod
	pod := sched.config.NextPod()
	// pod could be nil when schedulerQueue is closed
	if pod == nil {
		return
	}
	if pod.DeletionTimestamp != nil {
		sched.config.Recorder.Eventf(pod, v1.EventTypeWarning, "FailedScheduling", "skip schedule deleting pod: %v/%v", pod.Namespace, pod.Name)
		klog.V(3).Infof("Skip schedule deleting pod: %v/%v", pod.Namespace, pod.Name)
		return
	}

	klog.V(3).Infof("Attempting to schedule pod: %v/%v", pod.Namespace, pod.Name)

	// Synchronously attempt to find a fit for the pod.
	start := time.Now()
	// 2.獲取待調度Pod匹配的主機名
	suggestedHost, err := sched.schedule(pod)
	if err != nil {
		// schedule() may have failed because the pod would not fit on any host, so we try to
		// preempt, with the expectation that the next time the pod is tried for scheduling it
		// will fit due to the preemption. It is also possible that a different pod will schedule
		// into the resources that were preempted, but this is harmless.
		if fitError, ok := err.(*core.FitError); ok {
			preemptionStartTime := time.Now()
			sched.preempt(pod, fitError)
			metrics.PreemptionAttempts.Inc()
			metrics.SchedulingAlgorithmPremptionEvaluationDuration.Observe(metrics.SinceInMicroseconds(preemptionStartTime))
			metrics.SchedulingLatency.WithLabelValues(metrics.PreemptionEvaluation).Observe(metrics.SinceInSeconds(preemptionStartTime))
			// Pod did not fit anywhere, so it is counted as a failure. If preemption
			// succeeds, the pod should get counted as a success the next time we try to
			// schedule it. (hopefully)
			metrics.PodScheduleFailures.Inc()
		} else {
			klog.Errorf("error selecting node for pod: %v", err)
			metrics.PodScheduleErrors.Inc()
		}
		return
	}
	metrics.SchedulingAlgorithmLatency.Observe(metrics.SinceInMicroseconds(start))
	// Tell the cache to assume that a pod now is running on a given node, even though it hasn't been bound yet.
	// This allows us to keep scheduling without waiting on binding to occur.
	// 3.Pod與Node緩存,保證調度一直進行,不用等待每次綁定完成(綁定是一個耗時的過程)
	assumedPod := pod.DeepCopy()

	// Assume volumes first before assuming the pod.
	//
	// If all volumes are completely bound, then allBound is true and binding will be skipped.
	//
	// Otherwise, binding of volumes is started after the pod is assumed, but before pod binding.
	//
	// This function modifies 'assumedPod' if volume binding is required.
	// 4.判斷是否須要VolumeScheduling特性
	allBound, err := sched.assumeVolumes(assumedPod, suggestedHost)
	if err != nil {
		klog.Errorf("error assuming volumes: %v", err)
		metrics.PodScheduleErrors.Inc()
		return
	}

	// assume modifies `assumedPod` by setting NodeName=suggestedHost
	// 5.Pod對應的NodeName寫上主機名,存入緩存
	err = sched.assume(assumedPod, suggestedHost)
	if err != nil {
		klog.Errorf("error assuming pod: %v", err)
		metrics.PodScheduleErrors.Inc()
		return
	}
	// bind the pod to its host asynchronously (we can do this b/c of the assumption step above).
	// 6.請求apiserver,異步處理最終的綁定,寫入到etcd
	go func() {
		// Bind volumes first before Pod
		if !allBound {
			err := sched.bindVolumes(assumedPod)
			if err != nil {
				klog.Errorf("error binding volumes: %v", err)
				metrics.PodScheduleErrors.Inc()
				return
			}
		}

		err := sched.bind(assumedPod, &v1.Binding{
			ObjectMeta: metav1.ObjectMeta{Namespace: assumedPod.Namespace, Name: assumedPod.Name, UID: assumedPod.UID},
			Target: v1.ObjectReference{
				Kind: "Node",
				Name: suggestedHost,
			},
		})
		metrics.E2eSchedulingLatency.Observe(metrics.SinceInMicroseconds(start))
		if err != nil {
			klog.Errorf("error binding pod: %v", err)
			metrics.PodScheduleErrors.Inc()
		} else {
			metrics.PodScheduleSuccesses.Inc()
		}
	}()
}
複製代碼

主要作了如下工做:
一、從隊列中取出待調度的Pod
二、根據調度算法(預選+優選)獲取待調度Pod匹配的主機,若是未獲取到合適的主機,判斷是否須要preempt,即Pod的搶佔策略,爲Pod分配節點
三、將當前Pod緩存起來,假定已經綁定成功(主要是爲了將scheduling與binding過程分開)
四、判斷是否須要VolumeScheduling特性繼續添加Pod信息
五、Pod對應的NodeName寫上主機名(調度的本質就是將爲空的NodeName寫上相應的Node的值)
六、啓動新的binding協程,請求apiserver,異步處理最終的綁定,將結果寫入到etcd中數組

調度算法

最終的調度在generic_scheduler.goSchedule方法。調度主要分兩步,預選優選緩存

預選

預選算法調用的接口是findNodesThatFit,主要代碼以下:app

// Filters the nodes to find the ones that fit based on the given predicate functions
// Each node is passed through the predicate functions to determine if it is a fit
func (g *genericScheduler) findNodesThatFit(pod *v1.Pod, nodes []*v1.Node) ([]*v1.Node, FailedPredicateMap, error) {
	var filtered []*v1.Node
	failedPredicateMap := FailedPredicateMap{}

	// 該if表示,若是沒有配置預選的算法,則直接將全部的Node寫入匹配數組
	if len(g.predicates) == 0 {
		filtered = nodes
	} else {
		allNodes := int32(g.cache.NodeTree().NumNodes)
		// numFeasibleNodesToFind保證一次性不用返回過多的Node數量,避免數組過大
		numNodesToFind := g.numFeasibleNodesToFind(allNodes)

		// Create filtered list with enough space to avoid growing it
		// and allow assigning.
		filtered = make([]*v1.Node, numNodesToFind)
		errs := errors.MessageCountMap{}
		var (
			predicateResultLock sync.Mutex
			filteredLen         int32
			equivClass          *equivalence.Class
		)

		ctx, cancel := context.WithCancel(context.Background())

		// We can use the same metadata producer for all nodes.
		meta := g.predicateMetaProducer(pod, g.cachedNodeInfoMap)

		if g.equivalenceCache != nil {
			// getEquivalenceClassInfo will return immediately if no equivalence pod found
			equivClass = equivalence.NewClass(pod)
		}

		// checkNode處理預選策略
		checkNode := func(i int) {
			var nodeCache *equivalence.NodeCache
			// 每次獲取Node信息
			nodeName := g.cache.NodeTree().Next()
			if g.equivalenceCache != nil {
				nodeCache = g.equivalenceCache.LoadNodeCache(nodeName)
			}
			fits, failedPredicates, err := podFitsOnNode(
				pod,
				meta,
				g.cachedNodeInfoMap[nodeName],
				g.predicates,
				nodeCache,
				g.schedulingQueue,
				g.alwaysCheckAllPredicates,
				equivClass,
			)
			if err != nil {
				predicateResultLock.Lock()
				errs[err.Error()]++
				predicateResultLock.Unlock()
				return
			}
			if fits {
				// 保證獲取的Node數量在numNodesToFind內
				length := atomic.AddInt32(&filteredLen, 1)
				if length > numNodesToFind {
					// 通知ParallelizeUntil任務結束
					cancel()
					atomic.AddInt32(&filteredLen, -1)
				} else {
					filtered[length-1] = g.cachedNodeInfoMap[nodeName].Node()
				}
			} else {
				predicateResultLock.Lock()
				failedPredicateMap[nodeName] = failedPredicates
				predicateResultLock.Unlock()
			}
		}

		// Stops searching for more nodes once the configured number of feasible nodes
		// are found.
		// 並行處理多個Node的checkNode工做
		workqueue.ParallelizeUntil(ctx, 16, int(allNodes), checkNode)

		filtered = filtered[:filteredLen]
		if len(errs) > 0 {
			return []*v1.Node{}, FailedPredicateMap{}, errors.CreateAggregateFromMessageCountMap(errs)
		}
	}

	if len(filtered) > 0 && len(g.extenders) != 0 {
		for _, extender := range g.extenders {
			if !extender.IsInterested(pod) {
				continue
			}
			filteredList, failedMap, err := extender.Filter(pod, filtered, g.cachedNodeInfoMap)
			if err != nil {
				if extender.IsIgnorable() {
					klog.Warningf("Skipping extender %v as it returned error %v and has ignorable flag set",
						extender, err)
					continue
				} else {
					return []*v1.Node{}, FailedPredicateMap{}, err
				}
			}

			for failedNodeName, failedMsg := range failedMap {
				if _, found := failedPredicateMap[failedNodeName]; !found {
					failedPredicateMap[failedNodeName] = []algorithm.PredicateFailureReason{}
				}
				failedPredicateMap[failedNodeName] = append(failedPredicateMap[failedNodeName], predicates.NewFailureReason(failedMsg))
			}
			filtered = filteredList
			if len(filtered) == 0 {
				break
			}
		}
	}
	return filtered, failedPredicateMap, nil
}
複製代碼

findNodesThatFit主要作了幾個操做
一、判斷是否配置了預選算法,若是沒有,直接返回Node列表信息;
二、若是配置了預選算法,則同時對多個Node(最多一次16個)調用checkNode方法,判斷Pod是否能夠調度在該Node上;
三、預選篩選以後,若是配置了調度的擴展算法,須要繼續對篩選後的Pod與Node進行再一次的篩選,獲取最終匹配的Node列表。
這裏有一個注意的地方,獲取匹配的Node節點數量時,經過numFeasibleNodesToFind函數限制了每次獲取的節點數,最大值爲100。這樣當匹配到相應的Node數時,checkNode方法再也不調用。
這裏我的覺着有些問題,當Node數量足夠多的時候(大於100),因爲numFeasibleNodesToFind限制了Node數量,致使並不能掃描到全部的Node,這樣可能致使最合適的Node沒有被掃描到,匹配到的只是較優先的Node,則最終調度到的Node也不是最合適的Node,只是相較於比較合適。
最終實現調度判斷的接口是podFitsOnNode
podFitsOnNode最難理解的就是for循環了兩次,根據註釋,大體意思以下:
一、第一次循環,將全部的優先級比較高或者相等的nominatedPods加入到Node中,更新metanodeInfonominatedPods是指已經分配到Node內可是尚未真正運行起來的Pods。這樣作能夠保證優先級高的Pods不會由於如今的Pod的加入而致使調度失敗;
二、第二次調度,不將nominatedPods加入到Node內。這樣的緣由是由於考慮到像Pod affinity策略的話,若是當前的Pod依賴的是nominatedPods,這樣就會有問題。由於,nominatedPods不能保證必定能夠調度到相應的Node上。less

// podFitsOnNode checks whether a node given by NodeInfo satisfies the given predicate functions.
// For given pod, podFitsOnNode will check if any equivalent pod exists and try to reuse its cached
// predicate results as possible.
// This function is called from two different places: Schedule and Preempt.
// When it is called from Schedule, we want to test whether the pod is schedulable
// on the node with all the existing pods on the node plus higher and equal priority
// pods nominated to run on the node.
// When it is called from Preempt, we should remove the victims of preemption and
// add the nominated pods. Removal of the victims is done by SelectVictimsOnNode().
// It removes victims from meta and NodeInfo before calling this function.
// ---
// podFitsOnNode根據給定的NodeInfo判斷是否匹配相應的預選函數
// 對於一個給定的Pod,podFitsOnNode會檢查以前是否有等價的Pod,這樣就能夠直接複用等價Pod的預選結果
// 該函數會有兩個地方調用:Schedule和Preempt
// 當Schedule(正常調度)的時候,判斷Node上全部已經存在的Pod和將被指定將要調度到這個Node上的其餘全部高優先級Pod外,當前的Pod是否能夠調度
// 當Preempt(搶佔式)的時候,待定。。。
func podFitsOnNode( pod *v1.Pod, meta algorithm.PredicateMetadata, info *schedulercache.NodeInfo, predicateFuncs map[string]algorithm.FitPredicate, nodeCache *equivalence.NodeCache, queue internalqueue.SchedulingQueue, alwaysCheckAllPredicates bool, equivClass *equivalence.Class, ) (bool, []algorithm.PredicateFailureReason, error) {
	var (
		eCacheAvailable  bool
		failedPredicates []algorithm.PredicateFailureReason
	)

	podsAdded := false
	// We run predicates twice in some cases. If the node has greater or equal priority
	// nominated pods, we run them when those pods are added to meta and nodeInfo.
	// If all predicates succeed in this pass, we run them again when these
	// nominated pods are not added. This second pass is necessary because some
	// predicates such as inter-pod affinity may not pass without the nominated pods.
	// If there are no nominated pods for the node or if the first run of the
	// predicates fail, we don't run the second pass.
	// We consider only equal or higher priority pods in the first pass, because
	// those are the current "pod" must yield to them and not take a space opened
	// for running them. It is ok if the current "pod" take resources freed for
	// lower priority pods.
	// Requiring that the new pod is schedulable in both circumstances ensures that
	// we are making a conservative decision: predicates like resources and inter-pod
	// anti-affinity are more likely to fail when the nominated pods are treated
	// as running, while predicates like pod affinity are more likely to fail when
	// the nominated pods are treated as not running. We can't just assume the
	// nominated pods are running because they are not running right now and in fact,
	// they may end up getting scheduled to a different node.
	// 兩次循環的緣由主要就是由於NominatedPods調度的不必定就是此Node,還有Pod的親和性等問題
	for i := 0; i < 2; i++ {
		metaToUse := meta
		nodeInfoToUse := info
		if i == 0 {
			// 第一次調度,根據NominatedPods更新meta和nodeInfo信息,pod根據更新後的信息去預選
			// 第二次調度,meta和nodeInfo信息不變,保證pod不徹底依賴於NominatedPods(主要考慮到pod親和性之類的)
			podsAdded, metaToUse, nodeInfoToUse = addNominatedPods(pod, meta, info, queue)
		} else if !podsAdded || len(failedPredicates) != 0 {
			break
		}
		// Bypass eCache if node has any nominated pods.
		// TODO(bsalamat): consider using eCache and adding proper eCache invalidations
		// when pods are nominated or their nominations change.
		eCacheAvailable = equivClass != nil && nodeCache != nil && !podsAdded
		for predicateID, predicateKey := range predicates.Ordering() {
			var (
				fit     bool
				reasons []algorithm.PredicateFailureReason
				err     error
			)
			//TODO (yastij) : compute average predicate restrictiveness to export it as Prometheus metric
			if predicate, exist := predicateFuncs[predicateKey]; exist {
				if eCacheAvailable {
					fit, reasons, err = nodeCache.RunPredicate(predicate, predicateKey, predicateID, pod, metaToUse, nodeInfoToUse, equivClass)
				} else {
					fit, reasons, err = predicate(pod, metaToUse, nodeInfoToUse)
				}
				if err != nil {
					return false, []algorithm.PredicateFailureReason{}, err
				}

				if !fit {
					// eCache is available and valid, and predicates result is unfit, record the fail reasons
					failedPredicates = append(failedPredicates, reasons...)
					// if alwaysCheckAllPredicates is false, short circuit all predicates when one predicate fails.
					if !alwaysCheckAllPredicates {
						klog.V(5).Infoln("since alwaysCheckAllPredicates has not been set, the predicate " +
							"evaluation is short circuited and there are chances " +
							"of other predicates failing as well.")
						break
					}
				}
			}
		}
	}

	return len(failedPredicates) == 0, failedPredicates, nil
}
複製代碼

以後就是根據預選的調度算法,一個個判斷是否都知足。這裏有個小優化,若是當前的Pod在以前有一個等價的Pod,則直接從緩存返回相應上一次的結果。若是成功則不用繼續調用預選算法。可是,對於緩存部分,我我的有些疑問,可能對於上一個Pod緩存的結果是成功的,可是本次調度,Node信息發生變化了,緩存結果是成功的,可是實際上可能並不必定會成功。dom

預選調度算法

本節主要說的是默認的調度算法。默認的代碼在pkg/scheduler/algorithmprovider/defaults/defaults.go下,defaultPredicates方法返回的是默認的一系列預選算法。與預選相關的代碼都在pkg/scheduler/algorithm/predicates/predicates.go

對於每個調度算法,有一個優先級Order, 官網有詳細的描述。
調度方法基本一致,參數爲 (pod *v1.Pod, meta algorithm.PredicateMetadata, nodeInfo *schedulercache.NodeInfo),返回值爲 (bool, []algorithm.PredicateFailureReason, error)

優選

預選完成以後會獲得一個Node的數組。若是預選合適的節點數大於1,則須要調用優選算法根據評分獲取最優的節點。
優選算法調用的接口是PrioritizeNodes,使用與預選相似的多任務同步調用方式,採用MapReduce的思想,Map根據不一樣的優選算法獲取對某一Node的值,根據Reduce統計最終的結果。

優選調度算法

優選調度算法默認代碼在pkg/scheduler/algorithmprovider/defaults/defaults.go下,defaultPriorities方法返回的是默認的一系列優選算法,經過工廠模式處理相應的優選算法,代碼以下

func defaultPriorities() sets.String {
	return sets.NewString(
		// spreads pods by minimizing the number of pods (belonging to the same service or replication controller) on the same node.
		factory.RegisterPriorityConfigFactory(
			"SelectorSpreadPriority",
			factory.PriorityConfigFactory{
				MapReduceFunction: func(args factory.PluginFactoryArgs) (algorithm.PriorityMapFunction, algorithm.PriorityReduceFunction) {
					return priorities.NewSelectorSpreadPriority(args.ServiceLister, args.ControllerLister, args.ReplicaSetLister, args.StatefulSetLister)
				},
				Weight: 1,
			},
		),
		// pods should be placed in the same topological domain (e.g. same node, same rack, same zone, same power domain, etc.)
		// as some other pods, or, conversely, should not be placed in the same topological domain as some other pods.
		factory.RegisterPriorityConfigFactory(
			"InterPodAffinityPriority",
			factory.PriorityConfigFactory{
				Function: func(args factory.PluginFactoryArgs) algorithm.PriorityFunction {
					return priorities.NewInterPodAffinityPriority(args.NodeInfo, args.NodeLister, args.PodLister, args.HardPodAffinitySymmetricWeight)
				},
				Weight: 1,
			},
		),

		// Prioritize nodes by least requested utilization.
		factory.RegisterPriorityFunction2("LeastRequestedPriority", priorities.LeastRequestedPriorityMap, nil, 1),

		// Prioritizes nodes to help achieve balanced resource usage
		factory.RegisterPriorityFunction2("BalancedResourceAllocation", priorities.BalancedResourceAllocationMap, nil, 1),

		// Set this weight large enough to override all other priority functions.
		// TODO: Figure out a better way to do this, maybe at same time as fixing #24720.
		factory.RegisterPriorityFunction2("NodePreferAvoidPodsPriority", priorities.CalculateNodePreferAvoidPodsPriorityMap, nil, 10000),

		// Prioritizes nodes that have labels matching NodeAffinity
		factory.RegisterPriorityFunction2("NodeAffinityPriority", priorities.CalculateNodeAffinityPriorityMap, priorities.CalculateNodeAffinityPriorityReduce, 1),

		// Prioritizes nodes that marked with taint which pod can tolerate.
		factory.RegisterPriorityFunction2("TaintTolerationPriority", priorities.ComputeTaintTolerationPriorityMap, priorities.ComputeTaintTolerationPriorityReduce, 1),

		// ImageLocalityPriority prioritizes nodes that have images requested by the pod present.
		factory.RegisterPriorityFunction2("ImageLocalityPriority", priorities.ImageLocalityPriorityMap, nil, 1),
	)
}
複製代碼

用到的優選算法經過代碼結構基本能夠看出

每個不一樣的優選策略獨立成一個單獨的文件。
經過優選以後,調用 selectHost方法獲取分數最高的Node。若是多個Node分數相同,則使用輪詢的方式獲得最終的Node。

搶佔調度

當經過正常的調度流程若是沒有找到合適的節點(主要是預選沒有合適的節點),會判斷需不須要進行搶佔調度,具體的代碼在pkg/scheduler/scheduler.go文件下,用到的方法preempt,具體以下:

// preempt tries to create room for a pod that has failed to schedule, by preempting lower priority pods if possible.
// If it succeeds, it adds the name of the node where preemption has happened to the pod annotations.
// It returns the node name and an error if any.
// ---
// preempt儘量的經過去搶佔低優先級的Pod的空間,爲調度失敗的Pod創造空間
// 若是成功了,就會去添加在Pod註解中聲明的Node名稱
// 返回Node名稱和錯誤(若是有錯誤的話)
func (sched *Scheduler) preempt(preemptor *v1.Pod, scheduleErr error) (string, error) {

	// 1.判斷是否開啓Pod優先級,調度器是否配置了DisablePreemption,二者中任一知足即中止搶佔
	if !util.PodPriorityEnabled() || sched.config.DisablePreemption {
		klog.V(3).Infof("Pod priority feature is not enabled or preemption is disabled by scheduler configuration." +
			" No preemption is performed.")
		return "", nil
	}
	// 2.獲取待搶佔Pod的信息
	preemptor, err := sched.config.PodPreemptor.GetUpdatedPod(preemptor)
	if err != nil {
		klog.Errorf("Error getting the updated preemptor pod object: %v", err)
		return "", err
	}

	// 3.根據配置的算法獲取搶佔的節點
	// 獲取到的四個參數
	// 1.搶佔獲取到的Node
	// 2.須要被刪除掉的低優先級的Pod列表
	// 3.須要刪除掉的nominatedPods列表
	// 4.錯誤信息
	node, victims, nominatedPodsToClear, err := sched.config.Algorithm.Preempt(preemptor, sched.config.NodeLister, scheduleErr)
	metrics.PreemptionVictims.Set(float64(len(victims)))
	if err != nil {
		klog.Errorf("Error preempting victims to make room for %v/%v.", preemptor.Namespace, preemptor.Name)
		return "", err
	}
	var nodeName = ""
	if node != nil {
		// 1.將Pod和Node結合,更新相應的信息(Pod的nodeName有值),而且構造apiserver的調用
		// 2.全部的將要被刪除的Pod一一被刪除
		// 只有二者都知足了,才能保證搶佔成功
		nodeName = node.Name
		// Update the scheduling queue with the nominated pod information. Without
		// this, there would be a race condition between the next scheduling cycle
		// and the time the scheduler receives a Pod Update for the nominated pod.
		sched.config.SchedulingQueue.UpdateNominatedPodForNode(preemptor, nodeName)

		// Make a call to update nominated node name of the pod on the API server.
		err = sched.config.PodPreemptor.SetNominatedNodeName(preemptor, nodeName)
		if err != nil {
			klog.Errorf("Error in preemption process. Cannot update pod %v/%v annotations: %v", preemptor.Namespace, preemptor.Name, err)
			sched.config.SchedulingQueue.DeleteNominatedPodIfExists(preemptor)
			return "", err
		}

		for _, victim := range victims {
			if err := sched.config.PodPreemptor.DeletePod(victim); err != nil {
				klog.Errorf("Error preempting pod %v/%v: %v", victim.Namespace, victim.Name, err)
				return "", err
			}
			sched.config.Recorder.Eventf(victim, v1.EventTypeNormal, "Preempted", "by %v/%v on node %v", preemptor.Namespace, preemptor.Name, nodeName)
		}
	}
	// Clearing nominated pods should happen outside of "if node != nil". Node could
	// be nil when a pod with nominated node name is eligible to preempt again,
	// but preemption logic does not find any node for it. In that case Preempt()
	// function of generic_scheduler.go returns the pod itself for removal of the annotation.
	// 4.刪除nominatedPods,不要求必定成功,對總體結果不影響
	for _, p := range nominatedPodsToClear {
		rErr := sched.config.PodPreemptor.RemoveNominatedNodeName(p)
		if rErr != nil {
			klog.Errorf("Cannot remove nominated node annotation of pod: %v", rErr)
			// We do not return as this error is not critical.
		}
	}
	return nodeName, err
}
複製代碼

總體代碼結構比較清晰,有以下幾個步驟:
一、判斷是否須要進行搶佔調度,主要有兩個判斷項(PodPriority是否開啓、調度器是否配置DisablePreemption),二者缺一不可;
二、獲取待搶佔調度Pod配置的信息;
三、經過配置算法的搶佔策略獲取搶佔調度的結果(最核心的步驟);
四、收尾工做(更新Pod的信息、刪除低優先級的Pod、刪除一些資源如nominatedPods)
整個過程最核心的是調度算法獲取調度結果的接口,同預選優選同樣,默認的調度實現均在generic_scheduler.go文件,方法是Preempt
Preempt方法返回四個參數,分別是
1)Preempt獲得的Node;
2)被搶佔的Pod的列表(待刪除);
3)將要被清除的nominatedPods(待清除);
4)可能返回的error消息
Preempt方法主要執行如下幾個步驟:
一、從預選失敗的節點中獲取能夠用來作搶佔調度的節點,經過一個switch語句排除不能夠用來作搶佔調度的節點

如圖,只要預選失敗的緣由處於上述的錯誤緣由均不能再作搶佔調度節點;
二、獲取PDB(Pod中斷預算)列表,用來作後續的判斷標準;
三、經過調用 selectNodesForPreemption方法,判斷哪些Node能夠進行搶佔調度。經過 ParallelizeUntil方法同步對全部的Node進行判斷,判斷路徑爲 checkNode-->selectVictimsOnNode-->podFitsOnNode,最終同預選方法相似,使用了 podFitsOnNode方法。不一樣於普通預選,搶佔調度會先對Pod優先級判斷,而後在移除掉優先級較低的Pod以後再調用 podFitsOnNode方法,以此達到搶佔的效果。 selectNodesForPreemption方法返回的參數是一個map類型的值,key爲Node信息,value爲該Node若是做爲調度節點,將要清除的一些信息,包括Pods和PDB信息

四、獲取到搶佔調度能夠實現的Nodes資源後,繼續經過擴展的算法進行過濾;
五、選中最終的搶佔調度的Node,調用 pickOneNodeForPreemption方法,主要基於5個原則:
a)PDB violations(違規)值最小的Node;
b)挑選具備最低優先級受害者的節點,即被清除的Node上的Pods,它的優先級是最低的;
c)經過全部受害者Pods(將被刪除的低優先級Pods)的優先級總和作區分;
d)若是多個Node優先級總和仍然相等,則選擇具備最小受害者數量的Node;
e)若是多個Node優先級總和仍然相等,則選擇第一個這樣的Node(隨機排序);
六、選中最終的Node以後,記錄該Node上優先級較低的NominatedPods,這些Pod還未調度,須要將其調度關係進行刪除,從新應用。代碼以下:

// preempt finds nodes with pods that can be preempted to make room for "pod" to
// schedule. It chooses one of the nodes and preempts the pods on the node and
// returns 1) the node, 2) the list of preempted pods if such a node is found,
// 3) A list of pods whose nominated node name should be cleared, and 4) any
// possible error.
// Preempt does not update its snapshot. It uses the same snapshot used in the
// scheduling cycle. This is to avoid a scenario where preempt finds feasible
// nodes without preempting any pod. When there are many pending pods in the
// scheduling queue a nominated pod will go back to the queue and behind
// other pods with the same priority. The nominated pod prevents other pods from
// using the nominated resources and the nominated pod could take a long time
// before it is retried after many other pending pods.
func (g *genericScheduler) Preempt(pod *v1.Pod, nodeLister algorithm.NodeLister, scheduleErr error) (*v1.Node, []*v1.Pod, []*v1.Pod, error) {
	// Scheduler may return various types of errors. Consider preemption only if
	// the error is of type FitError.
	fitError, ok := scheduleErr.(*FitError)
	if !ok || fitError == nil {
		return nil, nil, nil, nil
	}
	if !podEligibleToPreemptOthers(pod, g.cachedNodeInfoMap) {
		klog.V(5).Infof("Pod %v/%v is not eligible for more preemption.", pod.Namespace, pod.Name)
		return nil, nil, nil, nil
	}
	allNodes, err := nodeLister.List()
	if err != nil {
		return nil, nil, nil, err
	}
	if len(allNodes) == 0 {
		return nil, nil, nil, ErrNoNodesAvailable
	}
	// 1.獲取預選調度失敗的節點,可是多是潛在的搶佔可能成功的節點(全部的搶佔節點都是在潛在節點內部選擇)
	potentialNodes := nodesWherePreemptionMightHelp(allNodes, fitError.FailedPredicates)
	if len(potentialNodes) == 0 {
		klog.V(3).Infof("Preemption will not help schedule pod %v/%v on any node.", pod.Namespace, pod.Name)
		// In this case, we should clean-up any existing nominated node name of the pod.
		return nil, nil, []*v1.Pod{pod}, nil
	}
	// 2.獲取PDB(Pod中斷預算)列表
	pdbs, err := g.pdbLister.List(labels.Everything())
	if err != nil {
		return nil, nil, nil, err
	}
	// 3.獲取全部能夠進行Preempt的Node節點的信息,主要包含該節點哪些Pod須要被搶佔掉
	nodeToVictims, err := selectNodesForPreemption(pod, g.cachedNodeInfoMap, potentialNodes, g.predicates,
		g.predicateMetaProducer, g.schedulingQueue, pdbs)
	if err != nil {
		return nil, nil, nil, err
	}

	// We will only check nodeToVictims with extenders that support preemption.
	// Extenders which do not support preemption may later prevent preemptor from being scheduled on the nominated
	// node. In that case, scheduler will find a different host for the preemptor in subsequent scheduling cycles.
	// 4.擴展的Preempt調度判斷
	nodeToVictims, err = g.processPreemptionWithExtenders(pod, nodeToVictims)
	if err != nil {
		return nil, nil, nil, err
	}

	// 5.選中某一個Node
	candidateNode := pickOneNodeForPreemption(nodeToVictims)
	if candidateNode == nil {
		return nil, nil, nil, err
	}

	// Lower priority pods nominated to run on this node, may no longer fit on
	// this node. So, we should remove their nomination. Removing their
	// nomination updates these pods and moves them to the active queue. It
	// lets scheduler find another place for them.
	// 6.判斷哪些Pod優先級較低,後續須要被清除掉,不做爲NominatedPods存在
	nominatedPods := g.getLowerPriorityNominatedPods(pod, candidateNode.Name)
	if nodeInfo, ok := g.cachedNodeInfoMap[candidateNode.Name]; ok {
		return nodeInfo.Node(), nodeToVictims[candidateNode].Pods, nominatedPods, err
	}

	return nil, nil, nil, fmt.Errorf(
		"preemption failed: the target node %s has been deleted from scheduler cache",
		candidateNode.Name)
}
複製代碼

綜上,搶佔調度主要強調的一點是Pod的優先級。與普通調度不一樣的是,搶佔調度對Pod作了明確的優先級區分,以此來達到搶佔的目的。

選舉

在Scheduler啓動的時候,須要判斷是否須要作選主操做。配置選舉操做很簡單,只須要在配置文件中添加--leader-elect=true便可。代碼中,若是檢測到了配置選舉,則首先會參加選舉,只有拿到主節點的scheduler才能執行調度相關工做。
選舉代碼結構比較簡單,如圖,代碼位於client-go包中,路徑爲client-go/tools/leaderelection/leaderelection.go

主要有三個函數 le.acquire(ctx)le.renew(ctx)以及 le.config.Callbacks.OnStartedLeading(ctx)
acquire表示是否選主成功,只有成功了以後,才能執行 OnStartedLeadingrenewOnStartedLeading是一個回調方法,執行的就是scheduler的 run方法。
renew主要作選主的更新操做。當節點上的scheduler被選主時,還須要不斷的更新信息,判斷是否主節點功能正常。
進入 acquire或者 renew方法,有一個共同的調用方法是 tryAcquireOrRenew,該方法就是整個選舉的核心實現。
tryAcquireOrRenew顧名思義,若是沒有獲取到租約,就去獲取leader的租約,不然就去更新租約。主要有三部分操做:
一、調用 Get操做獲取是否存在ElectionRecord。若是不存在,則調用 Create方法新建一個新的Endpoint,當前節點爲scheduler的主節點,選舉成功;不然,執行更新操做;
二、獲取到記錄,代表執行的是更新租約操做,須要驗證當前節點的身份和時間,判斷是否能夠執行更新租約操做;
三、更新信息,執行 Update操做,更新選主信息。

// tryAcquireOrRenew tries to acquire a leader lease if it is not already acquired,
// else it tries to renew the lease if it has already been acquired. Returns true
// on success else returns false.
// ---
// tryAcquireOrRenew,若是沒有獲取到租約,就去獲取leader的租約,不然去更新租約。
func (le *LeaderElector) tryAcquireOrRenew() bool {
	now := metav1.Now()
	leaderElectionRecord := rl.LeaderElectionRecord{
		HolderIdentity:       le.config.Lock.Identity(),
		LeaseDurationSeconds: int(le.config.LeaseDuration / time.Second),
		RenewTime:            now,
		AcquireTime:          now,
	}

	// 1. obtain or create the ElectionRecord
	// 1. 調用Endpoint的Get操做,獲取oldLeaderElectionRecord
	oldLeaderElectionRecord, err := le.config.Lock.Get()
	if err != nil {
		if !errors.IsNotFound(err) {
			klog.Errorf("error retrieving resource lock %v: %v", le.config.Lock.Describe(), err)
			return false
		}
		// 建立新的Endpoint
		if err = le.config.Lock.Create(leaderElectionRecord); err != nil {
			klog.Errorf("error initially creating leader election record: %v", err)
			return false
		}
		le.observedRecord = leaderElectionRecord
		le.observedTime = le.clock.Now()
		return true
	}

	// 2. Record obtained, check the Identity & Time
	// 2. 獲取到了記錄,檢查下身份和時間信息,判斷是否合法
	if !reflect.DeepEqual(le.observedRecord, *oldLeaderElectionRecord) {
		le.observedRecord = *oldLeaderElectionRecord
		le.observedTime = le.clock.Now()
	}
	if le.observedTime.Add(le.config.LeaseDuration).After(now.Time) &&
		!le.IsLeader() {
		klog.V(4).Infof("lock is held by %v and has not yet expired", oldLeaderElectionRecord.HolderIdentity)
		return false
	}

	// 3. We're going to try to update. The leaderElectionRecord is set to it's default
	// here. Let's correct it before updating.
	if le.IsLeader() {
		leaderElectionRecord.AcquireTime = oldLeaderElectionRecord.AcquireTime
		leaderElectionRecord.LeaderTransitions = oldLeaderElectionRecord.LeaderTransitions
	} else {
		leaderElectionRecord.LeaderTransitions = oldLeaderElectionRecord.LeaderTransitions + 1
	}

	// update the lock itself
	if err = le.config.Lock.Update(leaderElectionRecord); err != nil {
		klog.Errorf("Failed to update lock: %v", err)
		return false
	}
	le.observedRecord = leaderElectionRecord
	le.observedTime = le.clock.Now()
	return true
}
複製代碼

Scheduler的選舉操做比較簡單,主要就是經過判斷記錄在Etcd中的Endpoints是否能夠更新來判斷是否能夠進行選舉。整個選舉操做依賴於Etcd的特色來保證分佈式操做的成功和惟一。在kube-system的namespace下能夠查看相應的endpoint:kube-scheduler

相關文章
相關標籤/搜索