conv_layers = [ # 5層卷積,每兩層卷積後添加一層最大池化
layers.Conv2D(64, kernel_size=[3,3],padding='same', activation=tf.nn.relu), # 64是指核的數量,
layers.Conv2D(64, kernel_size=[3,3],padding='same', activation=tf.nn.relu), # same是指輸入於輸出保持相同size
layers.MaxPool2D(pool_size=[2, 2], strides=2, padding='same'),
layers.Conv2D(128, kernel_size=[3,3],padding='same', activation=tf.nn.relu),
layers.Conv2D(128, kernel_size=[3,3],padding='same', activation=tf.nn.relu),
layers.MaxPool2D(pool_size=[2, 2], strides=2, padding='same'),
layers.Conv2D(256, kernel_size=[3,3],padding='same', activation=tf.nn.relu),
layers.Conv2D(256, kernel_size=[3,3],padding='same', activation=tf.nn.relu),
layers.MaxPool2D(pool_size=[2, 2], strides=2, padding='same'),
layers.Conv2D(512, kernel_size=[3,3],padding='same', activation=tf.nn.relu),
layers.Conv2D(512, kernel_size=[3,3],padding='same', activation=tf.nn.relu),
layers.MaxPool2D(pool_size=[2, 2], strides=2, padding='same'),
layers.Conv2D(512, kernel_size=[3,3],padding='same', activation=tf.nn.relu),
layers.Conv2D(512, kernel_size=[3,3],padding='same', activation=tf.nn.relu),
layers.MaxPool2D(pool_size=[2, 2], strides=2, padding='same')
]