效果仍是有點問題的,但願你們共同探討一下ios
// FindRotation-angle.cpp : 定義控制檯應用程序的入口點。 // // findContours.cpp : 定義控制檯應用程序的入口點。 // #include "stdafx.h" #include <iostream> #include <vector> #include <opencv2/opencv.hpp> #include <opencv2/core/core.hpp> #include <opencv2/imgproc/imgproc.hpp> #include <opencv2/highgui/highgui.hpp> #pragma comment(lib,"opencv_core2410d.lib") #pragma comment(lib,"opencv_highgui2410d.lib") #pragma comment(lib,"opencv_imgproc2410d.lib") #define PI 3.1415926 using namespace std; using namespace cv; int hough_line(Mat src) { //【1】載入原始圖和Mat變量定義 Mat srcImage = src;//imread("1.jpg"); //工程目錄下應該有一張名爲1.jpg的素材圖 Mat midImage,dstImage;//臨時變量和目標圖的定義 //【2】進行邊緣檢測和轉化爲灰度圖 Canny(srcImage, midImage, 50, 200, 3);//進行一此canny邊緣檢測 cvtColor(midImage,dstImage, CV_GRAY2BGR);//轉化邊緣檢測後的圖爲灰度圖 //【3】進行霍夫線變換 vector<Vec4i> lines;//定義一個矢量結構lines用於存放獲得的線段矢量集合 HoughLinesP(midImage, lines, 1, CV_PI/180, 80, 50, 10 ); //【4】依次在圖中繪製出每條線段 for( size_t i = 0; i < lines.size(); i++ ) { Vec4i l = lines[i]; line( dstImage, Point(l[0], l[1]), Point(l[2], l[3]), Scalar(186,88,255), 1, CV_AA); } //【5】顯示原始圖 imshow("【原始圖】", srcImage); //【6】邊緣檢測後的圖 imshow("【邊緣檢測後的圖】", midImage); //【7】顯示效果圖 imshow("【效果圖】", dstImage); //waitKey(0); return 0; } int main() { // Read input binary image char *image_name = "test.jpg"; cv::Mat image = cv::imread(image_name,0); if (!image.data) return 0; cv::namedWindow("Binary Image"); cv::imshow("Binary Image",image); // 從文件中加載原圖 IplImage *pSrcImage = cvLoadImage(image_name, CV_LOAD_IMAGE_UNCHANGED); // 轉爲2值圖 cvThreshold(pSrcImage,pSrcImage,200,255,cv::THRESH_BINARY_INV); image = cv::Mat(pSrcImage,true); cv::imwrite("binary.jpg",image); // Get the contours of the connected components std::vector<std::vector<cv::Point>> contours; cv::findContours(image, contours, // a vector of contours CV_RETR_EXTERNAL, // retrieve the external contours CV_CHAIN_APPROX_NONE); // retrieve all pixels of each contours // Print contours' length std::cout << "Contours: " << contours.size() << std::endl; std::vector<std::vector<cv::Point>>::const_iterator itContours= contours.begin(); for ( ; itContours!=contours.end(); ++itContours) { std::cout << "Size: " << itContours->size() << std::endl; } // draw black contours on white image cv::Mat result(image.size(),CV_8U,cv::Scalar(255)); cv::drawContours(result,contours, -1, // draw all contours cv::Scalar(0), // in black 2); // with a thickness of 2 cv::namedWindow("Contours"); cv::imshow("Contours",result); // Eliminate too short or too long contours int cmin= 100; // minimum contour length int cmax= 1000; // maximum contour length std::vector<std::vector<cv::Point>>::const_iterator itc= contours.begin(); while (itc!=contours.end()) { if (itc->size() < cmin || itc->size() > cmax) itc= contours.erase(itc); else ++itc; } // draw contours on the original image cv::Mat original= cv::imread(image_name); cv::drawContours(original,contours, -1, // draw all contours cv::Scalar(255,255,0), // in white 2); // with a thickness of 2 cv::namedWindow("Contours on original"); cv::imshow("Contours on original",original); // Let's now draw black contours on white image result.setTo(cv::Scalar(255)); cv::drawContours(result,contours, -1, // draw all contours cv::Scalar(0), // in black 1); // with a thickness of 1 image= cv::imread("binary.jpg",0); //imshow("lll",result); //waitKey(0); // testing the bounding box // //霍夫變換進行直線檢測,此處使用的是probabilistic Hough transform(cv::HoughLinesP)而不是standard Hough transform(cv::HoughLines) cv::Mat result_line(image.size(),CV_8U,cv::Scalar(255)); result_line = result.clone(); hough_line(result_line); //Mat tempimage; //【2】進行邊緣檢測和轉化爲灰度圖 //Canny(result_line, tempimage, 50, 200, 3);//進行一此canny邊緣檢測 //imshow("canny",tempimage); //waitKey(0); //cvtColor(tempimage,result_line, CV_GRAY2BGR);//轉化邊緣檢測後的圖爲灰度圖 vector<Vec4i> lines; cv::HoughLinesP(result_line,lines,1,CV_PI/180,80,50,10); for(int i = 0; i < lines.size(); i++) { line(result_line,cv::Point(lines[i][0],lines[i][1]),cv::Point(lines[i][2],lines[i][3]),Scalar(0,0,0),2,8,0); } cv::namedWindow("line"); cv::imshow("line",result_line); //waitKey(0); / // //std::vector<std::vector<cv::Point>>::const_iterator itc_rec= contours.begin(); //while (itc_rec!=contours.end()) //{ // cv::Rect r0= cv::boundingRect(cv::Mat(*(itc_rec))); // cv::rectangle(result,r0,cv::Scalar(0),2); // ++itc_rec; //} //cv::namedWindow("Some Shape descriptors"); //cv::imshow("Some Shape descriptors",result); CvBox2D End_Rage2D; CvPoint2D32f rectpoint[4]; CvMemStorage *storage = cvCreateMemStorage(0); //開闢內存空間 CvSeq* contour = NULL; //CvSeq類型 存放檢測到的圖像輪廓邊緣全部的像素值,座標值特徵的結構體以鏈表形式 cvFindContours( pSrcImage, storage, &contour, sizeof(CvContour),CV_RETR_CCOMP, CV_CHAIN_APPROX_NONE);//這函數可選參數還有很多 for(; contour; contour = contour->h_next) //若是contour不爲空,表示找到一個以上輪廓,這樣寫法只顯示一個輪廓 //如改成for(; contour; contour = contour->h_next) 就能夠同時顯示多個輪廓 { End_Rage2D = cvMinAreaRect2(contour); //代入cvMinAreaRect2這個函數獲得最小包圍矩形 這裏已得出被測物體的角度,寬度,高度,和中點座標點存放在CvBox2D類型的結構體中, //主要工做基本結束。 for(int i = 0;i< 4;i++) { //CvArr* s=(CvArr*)&result; //cvLine(s,cvPointFrom32f(rectpoint[i]),cvPointFrom32f(rectpoint[(i+1)%4]),CV_G(0,0,255),2); line(result,cvPointFrom32f(rectpoint[i]),cvPointFrom32f(rectpoint[(i+1)%4]),Scalar(125),2); } cvBoxPoints(End_Rage2D,rectpoint); std::cout <<" angle:\n"<<(float)End_Rage2D.angle << std::endl; //被測物體旋轉角度 } cv::imshow("lalalal",result); cv::waitKey(); return 0; }
這個是原來實現的代碼的博客文章:函數
http://blog.csdn.net/wangyaninglm/article/details/41864251ui
參考文獻:spa
http://blog.csdn.net/z397164725/article/details/7248096.net
http://blog.csdn.net/fdl19881/article/details/6730112code
http://blog.csdn.net/mine1024/article/details/6044856component
本文同步分享在 博客「shiter」(CSDN)。
若有侵權,請聯繫 support@oschina.cn 刪除。
本文參與「OSC源創計劃」,歡迎正在閱讀的你也加入,一塊兒分享。orm