純Javascript實現平滑曲線生成

image.png

平滑曲線生成是一個很實用的技術 不少時候,咱們都須要經過繪製一些折線,而後讓計算機平滑的鏈接起來, 先來看下最終效果(紅色爲咱們輸入的直線,藍色爲擬合事後的曲線) 首尾能夠特殊處理讓圖形看起來更好:)算法

Jul-09-2021 15-28-04.gif

實現思路是利用貝塞爾曲線進行擬合typescript

貝塞爾曲線簡介

貝塞爾曲線(英語:Bézier curve)是計算機圖形學中至關重要的參數曲線。markdown

二次貝塞爾曲線

240px-Bézier_2_big.gif

二次方貝塞爾曲線的路徑由給定點P0、P一、P2的函數B(t)追蹤:app

image.png

三次貝塞爾曲線

240px-Bézier_3_big.gif

對於三次曲線,可由線性貝塞爾曲線描述的中介點Q0、Q一、Q2,和由二次曲線描述的點R0、R1所建構函數

image.png

貝塞爾曲線計算函數

根據上面的公式咱們可有獲得計算函數ui

二階this

/** * * * @param {number} p0 * @param {number} p1 * @param {number} p2 * @param {number} t * @return {*} * @memberof Path */
  bezier2P(p0: number, p1: number, p2: number, t: number) {
    const P0 = p0 * Math.pow(1 - t, 2);
    const P1 = p1 * 2 * t * (1 - t);
    const P2 = p2 * t * t;
    return P0 + P1 + P2;
  }
  
    /** * * * @param {Point} p0 * @param {Point} p1 * @param {Point} p2 * @param {number} num * @param {number} tick * @return {*} {Point} * @memberof Path */
  getBezierNowPoint2P(
      p0: Point,
      p1: Point,
      p2: Point,
      num: number,
      tick: number,
  ): Point {
    return {
      x: this.bezier2P(p0.x, p1.x, p2.x, num * tick),
      y: this.bezier2P(p0.y, p1.y, p2.y, num * tick),
    };
  }
  
    /** * 生成二次方貝塞爾曲線頂點數據 * * @param {Point} p0 * @param {Point} p1 * @param {Point} p2 * @param {number} [num=100] * @param {number} [tick=1] * @return {*} * @memberof Path */
  create2PBezier( p0: Point, p1: Point, p2: Point, num: number = 100, tick: number = 1, ) {
    const t = tick / (num - 1);
    const points = [];
    for (let i = 0; i < num; i++) {
      const point = this.getBezierNowPoint2P(p0, p1, p2, i, t);
      points.push({x: point.x, y: point.y});
    }
    return points;
  }
複製代碼

三階spa

/** * 三次方塞爾曲線公式 * * @param {number} p0 * @param {number} p1 * @param {number} p2 * @param {number} p3 * @param {number} t * @return {*} * @memberof Path */
  bezier3P(p0: number, p1: number, p2: number, p3: number, t: number) {
    const P0 = p0 * Math.pow(1 - t, 3);
    const P1 = 3 * p1 * t * Math.pow(1 - t, 2);
    const P2 = 3 * p2 * Math.pow(t, 2) * (1 - t);
    const P3 = p3 * Math.pow(t, 3);
    return P0 + P1 + P2 + P3;
  }
  
    /** * 獲取座標 * * @param {Point} p0 * @param {Point} p1 * @param {Point} p2 * @param {Point} p3 * @param {number} num * @param {number} tick * @return {*} * @memberof Path */
  getBezierNowPoint3P( p0: Point, p1: Point, p2: Point, p3: Point, num: number, tick: number, ) {
    return {
      x: this.bezier3P(p0.x, p1.x, p2.x, p3.x, num * tick),
      y: this.bezier3P(p0.y, p1.y, p2.y, p3.y, num * tick),
    };
  }
  
    /** * 生成三次方貝塞爾曲線頂點數據 * * @param {Point} p0 起始點 { x : number, y : number} * @param {Point} p1 控制點1 { x : number, y : number} * @param {Point} p2 控制點2 { x : number, y : number} * @param {Point} p3 終止點 { x : number, y : number} * @param {number} [num=100] * @param {number} [tick=1] * @return {Point []} * @memberof Path */
  create3PBezier( p0: Point, p1: Point, p2: Point, p3: Point, num: number = 100, tick: number = 1, ) {
    const pointMum = num;
    const _tick = tick;
    const t = _tick / (pointMum - 1);
    const points = [];
    for (let i = 0; i < pointMum; i++) {
      const point = this.getBezierNowPoint3P(p0, p1, p2, p3, i, t);
      points.push({x: point.x, y: point.y});
    }
    return points;
  }
複製代碼

擬合算法

image.png

問題在於如何獲得控制點,咱們以比較簡單的方法code

  1. 取 p1-pt-p2的角平分線 c1c2垂直於該條角平分線 c2爲p2的投影點
  2. 取短邊做爲c1-pt c2-pt的長度
  3. 對該長度進行縮放 這個長度能夠大概理解爲曲線的彎曲程度

image.png

ab線段 這裏簡單處理 只使用了二階的曲線生成 -> 🌈 這裏能夠按照我的想法處理
bc線段使用abc計算出來的控制點c2和bcd計算出來的控制點c3 以此類推orm

/** * 生成平滑曲線所需的控制點 * * @param {Vector2D} p1 * @param {Vector2D} pt * @param {Vector2D} p2 * @param {number} [ratio=0.3] * @return {*} * @memberof Path */
  createSmoothLineControlPoint( p1: Vector2D, pt: Vector2D, p2: Vector2D, ratio: number = 0.3, ) {
    const vec1T: Vector2D = vector2dMinus(p1, pt);
    const vecT2: Vector2D = vector2dMinus(p1, pt);
    const len1: number = vec1T.length;
    const len2: number = vecT2.length;
    const v: number = len1 / len2;
    let delta;
    if (v > 1) {
      delta = vector2dMinus(
          p1,
          vector2dPlus(pt, vector2dMinus(p2, pt).scale(1 / v)),
      );
    } else {
      delta = vector2dMinus(
          vector2dPlus(pt, vector2dMinus(p1, pt).scale(v)),
          p2,
      );
    }
    delta = delta.scale(ratio);
    const control1: Point = {
      x: vector2dPlus(pt, delta).x,
      y: vector2dPlus(pt, delta).y,
    };
    const control2: Point = {
      x: vector2dMinus(pt, delta).x,
      y: vector2dMinus(pt, delta).y,
    };
    return {control1, control2};
  }
  
    /** * 平滑曲線生成 * * @param {Point []} points * @param {number} ratio * @return {*} * @memberof Path */
  createSmoothLine(points: Point[], ratio: number = 0.3) {
    const len = points.length;
    let resultPoints = [];
    const controlPoints = [];
    if (len < 3) return;
    for (let i = 0; i < len - 2; i++) {
      const {control1, control2} = this.createSmoothLineControlPoint(
          new Vector2D(points[i].x, points[i].y),
          new Vector2D(points[i + 1].x, points[i + 1].y),
          new Vector2D(points[i + 2].x, points[i + 2].y),
          ratio,
      );
      controlPoints.push(control1);
      controlPoints.push(control2);
      let points1;
      let points2;

      // 首端控制點只用一個
      if (i === 0) {
        points1 = this.create2PBezier(points[i], control1, points[i + 1], 50);
      } else {
        console.log(controlPoints);
        points1 = this.create3PBezier(
            points[i],
            controlPoints[2 * i - 1],
            control1,
            points[i + 1],
            50,
        );
      }
      // 尾端部分
      if (i + 2 === len - 1) {
        points2 = this.create2PBezier(
            points[i + 1],
            control2,
            points[i + 2],
            50,
        );
      }

      if (i + 2 === len - 1) {
        resultPoints = [...resultPoints, ...points1, ...points2];
      } else {
        resultPoints = [...resultPoints, ...points1];
      }
    }
    return resultPoints;
  }
複製代碼

案例代碼

const input = [
        { x: 0, y: 0 },
        { x: 150, y: 150 },
        { x: 300, y: 0 },
        { x: 400, y: 150 },
        { x: 500, y: 0 },
        { x: 650, y: 150 },
    ]
    const s = path.createSmoothLine(input);
    let ctx = document.getElementById('cv').getContext('2d');
    ctx.strokeStyle = 'blue';
    ctx.beginPath();
    ctx.moveTo(0, 0);
    for (let i = 0; i < s.length; i++) {
        ctx.lineTo(s[i].x, s[i].y);
    }
    ctx.stroke();
    ctx.beginPath();
    ctx.moveTo(0, 0);
    for (let i = 0; i < input.length; i++) {
        ctx.lineTo(input[i].x, input[i].y);
    }
    ctx.strokeStyle = 'red';
    ctx.stroke();
    document.getElementById('btn').addEventListener('click', () => {
        let app = document.getElementById('app');
        let index = 0;
        let move = () => {
            if (index < s.length) {
                app.style.left = s[index].x - 10 + 'px';
                app.style.top = s[index].y - 10 + 'px';
                index++;
                requestAnimationFrame(move)
            }
        }
        move()
    })
複製代碼

附錄:Vector2D相關的代碼

/** * * * @class Vector2D * @extends {Array} */
class Vector2D extends Array {
  /** * Creates an instance of Vector2D. * @param {number} [x=1] * @param {number} [y=0] * @memberof Vector2D * */
  constructor(x: number = 1, y: number = 0) {
    super();
    this.x = x;
    this.y = y;
  }

  /** * * @param {number} v * @memberof Vector2D */
  set x(v) {
    this[0] = v;
  }

  /** * * @param {number} v * @memberof Vector2D */
  set y(v) {
    this[1] = v;
  }

  /** * * * @readonly * @memberof Vector2D */
  get x() {
    return this[0];
  }

  /** * * * @readonly * @memberof Vector2D */
  get y() {
    return this[1];
  }

  /** * * * @readonly * @memberof Vector2D */
  get length() {
    return Math.hypot(this.x, this.y);
  }

  /** * * * @readonly * @memberof Vector2D */
  get dir() {
    return Math.atan2(this.y, this.x);
  }

  /** * * * @return {*} * @memberof Vector2D */
  copy() {
    return new Vector2D(this.x, this.y);
  }

  /** * * * @param {*} v * @return {*} * @memberof Vector2D */
  add(v) {
    this.x += v.x;
    this.y += v.y;
    return this;
  }

  /** * * * @param {*} v * @return {*} * @memberof Vector2D */
  sub(v) {
    this.x -= v.x;
    this.y -= v.y;
    return this;
  }

  /** * * * @param {*} a * @return {Vector2D} * @memberof Vector2D */
  scale(a) {
    this.x *= a;
    this.y *= a;
    return this;
  }

  /** * * * @param {*} rad * @return {*} * @memberof Vector2D */
  rotate(rad) {
    const c = Math.cos(rad);
    const s = Math.sin(rad);
    const [x, y] = this;

    this.x = x * c + y * -s;
    this.y = x * s + y * c;

    return this;
  }

  /** * * * @param {*} v * @return {*} * @memberof Vector2D */
  cross(v) {
    return this.x * v.y - v.x * this.y;
  }

  /** * * * @param {*} v * @return {*} * @memberof Vector2D */
  dot(v) {
    return this.x * v.x + v.y * this.y;
  }

  /** * 歸一 * * @return {*} * @memberof Vector2D */
  normalize() {
    return this.scale(1 / this.length);
  }
}

/** * 向量的加法 * * @param {*} vec1 * @param {*} vec2 * @return {Vector2D} */
function vector2dPlus(vec1, vec2) {
  return new Vector2D(vec1.x + vec2.x, vec1.y + vec2.y);
}

/** * 向量的減法 * * @param {*} vec1 * @param {*} vec2 * @return {Vector2D} */
function vector2dMinus(vec1, vec2) {
  return new Vector2D(vec1.x - vec2.x, vec1.y - vec2.y);
}

export {Vector2D, vector2dPlus, vector2dMinus};
複製代碼
相關文章
相關標籤/搜索