聞其名,便知其義,併發的hashmap, 咱們先來看看ConcurrentHashMap數據結構圖: java
ConcurrentHashMap由多個Segment組成,而Segment內部是由HashEntry(存放key-value對)數組組成(相似於HashMap的Entry數組)。 node
從代碼來看ConcurrentHashMap的基本屬性: 數組
//segment掩碼值: 用於計算key所在segments索引值 final int segmentMask; //segment偏移值: 用於計算key所在segments索引值 final int segmentShift; //segments數組,其內部也是由HashEntry數組實現,正由於有了多個segment,才提升了併發度 final Segment<K,V>[] segments;看到重要的Segment數據結構:
/** * 其實現了ReentrantLock, 自身可線程安全 * 其自己就像個HashMap */ static final class Segment<K,V> extends ReentrantLock implements Serializable { //存放元素的table transient volatile HashEntry<K,V>[] table; //元素個數 transient int count; //table resize閾值 transient int threshold; //裝載因子,默認0.75 final float loadFactor; ... }仍是先從ConcurrentHashMap初始化工做開始提及:
public ConcurrentHashMap(int initialCapacity, float loadFactor, int concurrencyLevel) { if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0) throw new IllegalArgumentException(); if (concurrencyLevel > MAX_SEGMENTS) //併發級別,默認16,最大值爲65536 concurrencyLevel = MAX_SEGMENTS; // Find power-of-two sizes best matching arguments int sshift = 0; int ssize = 1; //segment數組的大小,必須是大於concurrentLevel且最小的2的指數 while (ssize < concurrencyLevel) { //找到大於等於conrrencyLevel且爲2的指數的最小ssize ++sshift; ssize <<= 1; } this.segmentShift = 32 - sshift; //segmentShift段偏移, 32即hashCode是int型(4字節32位),用來計算key所在segment下標 this.segmentMask = ssize - 1; //segment段掩碼:2^ssize - 1, 相似與子網掩碼的道理,ssize默認16,掩碼就是1111,用來計算key所在segment下標 if (initialCapacity > MAXIMUM_CAPACITY) //初始化容量(segments數組),默認16 initialCapacity = MAXIMUM_CAPACITY; int c = initialCapacity / ssize; if (c * ssize < initialCapacity) ++c; int cap = MIN_SEGMENT_TABLE_CAPACITY; //segment中的table數組大小,最小爲2, 值也必須是2的指數倍 while (cap < c) cap <<= 1; // create segments and segments[0] Segment<K,V> s0 = new Segment<K,V>(loadFactor, (int)(cap * loadFactor), (HashEntry<K,V>[])new HashEntry[cap]); //建立segment[0],用於後面建立其餘segment的模版 Segment<K,V>[] ss = (Segment<K,V>[])new Segment[ssize]; //建立segments UNSAFE.putOrderedObject(ss, SBASE, s0); // ordered write of segments[0] this.segments = ss; }
一些基本的操做實現put(), get(), remove(),size(): 安全
public V put(K key, V value) { Segment<K,V> s; if (value == null) throw new NullPointerException(); //鍵值都不可爲null int hash = hash(key); //計算key的hash值 int j = (hash >>> segmentShift) & segmentMask; //計算key所在segment索引值,保證j值會在segments索引範圍內 if ((s = (Segment<K,V>)UNSAFE.getObject(segments, (j << SSHIFT) + SBASE)) == null)//若對應segment不存在 s = ensureSegment(j); //建立segment return s.put(key, hash, value, false); }hash計算, 與HashMap有區別:
private int hash(Object k) { int h = hashSeed; if ((0 != h) && (k instanceof String)) { return sun.misc.Hashing.stringHash32((String) k); } h ^= k.hashCode(); h += (h << 15) ^ 0xffffcd7d; h ^= (h >>> 10); h += (h << 3); h ^= (h >>> 6); h += (h << 2) + (h << 14); return h ^ (h >>> 16); }ensureSegment方法:
private Segment<K,V> ensureSegment(int k) { final Segment<K,V>[] ss = this.segments; long u = (k << SSHIFT) + SBASE; // raw offset Segment<K,V> seg; if ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u)) == null) { Segment<K,V> proto = ss[0]; // use segment 0 as prototype int cap = proto.table.length; float lf = proto.loadFactor; int threshold = (int)(cap * lf); HashEntry<K,V>[] tab = (HashEntry<K,V>[])new HashEntry[cap]; if ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u)) == null) { // recheck Segment<K,V> s = new Segment<K,V>(lf, threshold, tab); //建立新的segment while ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u)) == null) { if (UNSAFE.compareAndSwapObject(ss, u, null, seg = s)) break; } } } return seg; }繼續看Segment的put方法實現:
final V put(K key, int hash, V value, boolean onlyIfAbsent) { HashEntry<K,V> node = tryLock() ? null : //獲取到了segment鎖,node爲null scanAndLockForPut(key, hash, value); //未獲取到鎖,則在等鎖過程當中先定位,構建新的node節點 V oldValue; try { HashEntry<K,V>[] tab = table; int index = (tab.length - 1) & hash; //根據key的hash值計算key在table中的索引 HashEntry<K,V> first = entryAt(tab, index); //獲取第一個對應bucket的第一個HashEntry for (HashEntry<K,V> e = first;;) { if (e != null) { //該HashEntry已經有元素 K k; if ((k = e.key) == key || (e.hash == hash && key.equals(k))) { //若key相等 oldValue = e.value; if (!onlyIfAbsent) { //須要覆蓋舊值 e.value = value; ++modCount; } break; } e = e.next; } else { //找完整個HashEntry bucket鏈表都沒有相等的元素,則插入 if (node != null) //若前面等待鎖時,已經初始化了node node.setNext(first); //添加到bucket鏈表頭部 else //新建node node = new HashEntry<K,V>(hash, key, value, first); int c = count + 1; if (c > threshold && tab.length < MAXIMUM_CAPACITY) rehash(node); //擴容 else setEntryAt(tab, index, node); //插入新HashEntry到table的index下標位置 ++modCount; count = c; oldValue = null; break; } } } finally { unlock(); //解鎖該segment } return oldValue; }也可看看等鎖過程scanAndLockForPut()方法:
private HashEntry<K,V> scanAndLockForPut(K key, int hash, V value) { HashEntry<K,V> first = entryForHash(this, hash); //該hash值對應的bucket鏈表的第一個節點 HashEntry<K,V> e = first; HashEntry<K,V> node = null; int retries = -1; // negative while locating node while (!tryLock()) { //未獲取到鎖繼續嘗試構建new node HashEntry<K,V> f; // to recheck first below if (retries < 0) { if (e == null) { //第一個節點爲null, 表示該bucket index未被佔用 if (node == null) // 建立新節點 node = new HashEntry<K,V>(hash, key, value, null); retries = 0; } else if (key.equals(e.key))//若找到相等的元素,就不用再嘗試了 retries = 0; else //繼續看下一個節點 e = e.next; } else if (++retries > MAX_SCAN_RETRIES) { //嘗試次數太多,就直接鎖上,該值在cpu核數>1時爲64次,不然爲1次 lock(); break; } else if ((retries & 1) == 0 && (f = entryForHash(this, hash)) != first) { //若node新建了或找到相等,可是這時有可能在等鎖過程,其餘線程修改了頭節點(那個節點hash後也在相同的bucket index)或刪除該頭節點 e = first = f; // re-traverse if entry changed retries = -1; } } return node; }
上面這個過程相似put裏的過程,只是但願線程在被鎖住了能夠儘可能提早作一些事情。 數據結構
最後再來看看,擴容rehash的過程: 多線程
private void rehash(HashEntry<K,V> node) { HashEntry<K,V>[] oldTable = table; int oldCapacity = oldTable.length; int newCapacity = oldCapacity << 1; //擴容爲原來的2倍 threshold = (int)(newCapacity * loadFactor); //新的閾值 HashEntry<K,V>[] newTable = (HashEntry<K,V>[]) new HashEntry[newCapacity]; int sizeMask = newCapacity - 1; // table掩碼 for (int i = 0; i < oldCapacity ; i++) { HashEntry<K,V> e = oldTable[i]; if (e != null) { HashEntry<K,V> next = e.next; int idx = e.hash & sizeMask; if (next == null) //在該bucket上只有一個節點,則直接添加到新table裏 newTable[idx] = e; else { // 該bucket鏈表上不止一個節點,則保持整個鏈表重用 HashEntry<K,V> lastRun = e; int lastIdx = idx; for (HashEntry<K,V> last = next; //找到該bucket鏈上最後一個節點 last != null; last = last.next) { int k = last.hash & sizeMask; if (k != lastIdx) { lastIdx = k; lastRun = last; } } newTable[lastIdx] = lastRun; //賦值該bucketin最後一個節點 //依次克隆該bucket鏈表上的全部節點 for (HashEntry<K,V> p = e; p != lastRun; p = p.next) { V v = p.value; int h = p.hash; int k = h & sizeMask; HashEntry<K,V> n = newTable[k]; newTable[k] = new HashEntry<K,V>(h, p.key, v, n); } } } } int nodeIndex = node.hash & sizeMask; //添加新的節點 node.setNext(newTable[nodeIndex]); newTable[nodeIndex] = node; table = newTable; }
這個put操做就簡略說了,繼續看看get方法吧。 併發
public V get(Object key) { Segment<K,V> s; // manually integrate access methods to reduce overhead HashEntry<K,V>[] tab; int h = hash(key.hashCode());//根據key的hashCode計算hash值 long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE; //獲得其key所在segment下標 if ((s = (Segment<K,V>)UNSAFE.getObjectVolatile(segments, u)) != null && (tab = s.table) != null) { for (HashEntry<K,V> e = (HashEntry<K,V>) UNSAFE.getObjectVolatile //獲取該key對應segment.table中的第一個節點 (tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE); e != null; e = e.next) { //遍歷bucket鏈表,比較,返回 K k; if ((k = e.key) == key || (e.hash == h && key.equals(k))) return e.value; } } return null; }
public V remove(Object key) { int hash = hash(key.hashCode()); //計算hash值 Segment<K,V> s = segmentForHash(hash); //定位segment return s == null ? null : s.remove(key, hash, null); } private Segment<K,V> segmentForHash(int h) { long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE; return (Segment<K,V>) UNSAFE.getObjectVolatile(segments, u); }
Segment中的remove方法,基本就是鏈表的刪除操做: ssh
final V remove(Object key, int hash, Object value) { if (!tryLock()) //請求鎖 scanAndLock(key, hash); //嘗試獲取鎖 V oldValue = null; try { HashEntry<K,V>[] tab = table; int index = (tab.length - 1) & hash; //根據hash計算元素所在table的索引 HashEntry<K,V> e = entryAt(tab, index); //獲取該元素 HashEntry<K,V> pred = null; while (e != null) { K k; HashEntry<K,V> next = e.next; if ((k = e.key) == key || (e.hash == hash && key.equals(k))) { V v = e.value; if (value == null || value == v || value.equals(v)) { if (pred == null) //刪除元素頭節點 setEntryAt(tab, index, next); else //將刪除節點的前一個節點--->刪除節點的下一個節點 pred.setNext(next); ++modCount; --count; oldValue = v; } break; } pred = e; e = next; } } finally { unlock();//解鎖 } return oldValue; }
public int size() { // Try a few times to get accurate count. On failure due to // continuous async changes in table, resort to locking. final Segment<K,V>[] segments = this.segments; int size; boolean overflow; // true if size overflows 32 bits long sum; // sum of modCounts long last = 0L; // previous sum int retries = -1; // first iteration isn't retry try { for (;;) { if (retries++ == RETRIES_BEFORE_LOCK) { //在對每一個segment加鎖前先嚐試不加鎖(假設沒有線程寫操做),默認嘗試2次 for (int j = 0; j < segments.length; ++j) ensureSegment(j).lock(); //加鎖 } sum = 0L; size = 0; overflow = false; for (int j = 0; j < segments.length; ++j) { Segment<K,V> seg = segmentAt(segments, j); if (seg != null) { sum += seg.modCount; int c = seg.count; if (c < 0 || (size += c) < 0) overflow = true; } } if (sum == last) break; last = sum; } } finally { if (retries > RETRIES_BEFORE_LOCK) { //說明嘗試失敗,要解鎖 for (int j = 0; j < segments.length; ++j) segmentAt(segments, j).unlock(); } } return overflow ? Integer.MAX_VALUE : size; }上面就分析了ConcurrentHashMap的一些基本操做,仍是比較有意思的,可能你會看到這裏面有不少UNSAFE相關的操做,這是非jdk核心庫的一個類,聞其名,就不安全,但jdk裏不少都會用,由於其操做的性能要比普通的操做高,能夠了解相關文章,那麼ConcurrentHashMap併發性能到底怎麼樣呢?作了一些簡單的性能測試, ConcurrentHashMap和HashTable:
5個線程,插入100w對象,ConcurrentHashMap性能高於HashTable, 並且會隨着線程數和數據量增長,性能差會更大。 async
不吝指正。 性能