Linear and Quadratic Programming Solver ( Arithmetic and Algebra) CGAL 4.13 -User Manual

Which Programs can be Solved?

This package lets you solve convex quadratic programs of the general formhtml

 

in n real variables x=(x0,,xn1).ios

Here,算法

  • A is an m×n matrix (the constraint matrix),
  • b is an m-dimensional vector (the right-hand side),
  •  is an m-dimensional vector of relations from {,=,}, express

  • l is an n-dimensional vector of lower bounds for x, where ljR{} for all j
  • u is an n-dimensional vector of upper bounds for x, where ujR{} for all j app

  • D is a symmetric positive-semidefinite n×n matrix (the quadratic objective function),less

  • c is an n-dimensional vector (the linear objective function), and
  • c0 is a constant. dom

If D=0, the program (QP) is actually a linear program. Section Robustness on robustness briefly discusses the case of D not being positive-semidefinite and therefore not defining a convex program.ide

Solving the program means to find an n-vector x such that Axb,lxu (a feasible solution), and with the smallest objective function value xTDx+cTx+c0 among all feasible solutions.函數

There might be no feasible solution at all, in which case the quadratic program is infeasible, or there might be feasible solutions of arbitrarily small objective function value, in which case the program is unbounded.測試

 

本包使你可以解決凸二次規劃(convex quadratic programs )的通用形式:

其中:x是n個變量的向量,x=x=(x0,,xn1)

這裏:

  • A 是一個mxn矩陣(條件矩陣)。
  • b是一個m維的向量(右手邊),
  • ⋛ 是一個關係 {,=,}的m維向量

  • l 是一個x的n維下界向量,對於全部j有lj∈R{};
  • u 是一個x的n維上界向量 ,對於 全部的j有ujR{};

  • D 是一個對稱的半正定的(positive-semidefinite)nxn矩陣(目標函數

  • c 是一個n維向量(線性目標函數)
  • c0  是一個常數. 

若是D=0,本規劃(QP)其實是一個線性規劃。在Robustness一節,簡單討論了當D不是半正的(positive-semidefinite)而是沒有定義一個凸規劃狀況下的健壯性問題。解這個問題意味着尋找一個n維向量x*,Ax*⋛b,lxu (一個可行解),而且在全部可行解中找到一個最小的目標函數解 xTDx+cTx+c0。

可能根本就沒有可行解,這種狀況下二次規劃爲不可行,或可能在可行解中有任意小的目標函數值,即此規劃無界。

Design, Efficiency, and Robustness

The design of the package is quite simple. The linear or quadratic program to be solved is supplied in form of an object of a class that is a model of the concept QuadraticProgram (or some specialized other concepts, e.g. for linear programs). CGAL provides a number of easy-to-use and flexible models, see Section How to Enter and Solve a Program below. The input data may be of any given number type, such as doubleint, or any exact type.

Then the program is solved using the function solve_quadratic_program() (or some specialized other functions, e.g. for linear programs). For this, you also have to provide a suitable exact number type ET used in the solution process. In case of input type double, solution methods that use floating-point-filtering are chosen by default for certain programs (in some cases, this is not appropriate, and the default should be changed; see Section Customizing the Solver for details).

The output of this is an object of Quadratic_program_solution<ET> which you can in turn query for various things: what is the status of the program (optimally solved, infeasible, or unbounded?), what are the values of the optimal solution x, what is the associated objective function value, etc.

You can in particular get certificates for the solution. In short, these are proofs that the output is correct. Thus, if you don't believe in the solution (whether it says "optimally solved", "infeasible", or "unbounded"), you can verify it yourself by using the certificates. Section Solution Certificates says more about this.

 

本包的設計十分簡單。線性或二次規劃問題求解由一個概念QuadraticProgram (or some specialized other concepts, e.g. for linear programs)的模型類來提供。CGAL提供一個易用的數字和靈活的模型(見How to Enter and Solve a Program小節)。輸入的數據能夠是任何數據類型,如double,int或任何精確類型。

規劃由函數solve_quadratic_program()完成(或其餘特殊的函數,即線性規劃)。爲此,在 你也必須提供一個解過程當中使用的合適的精確(exact)數據類型ET。對於輸入類型double,使用浮點過濾(floating-point-filtering)解方法將爲特定的規劃缺省選定(有些狀況下,這是不妥的,缺省的方法須要改變,見Customizing the Solver 節)。

解的輸出是一個Quadratic_program_solution<ET>對象,你能夠經過它獲得不一樣的數據:規劃的狀態(優化的解、不可行或無界),優化的解x*,相關的目標函數值等。

你能夠取得該解的憑據(certificates),即輸出正確的證據。若是你不相信這個解,你能本身經過這個憑據驗證它(見Solution Certificates節)

 

2.1 Efficiency

The concept QuadraticProgram (as well as the other specialized ones) require a dense interface of the program, in terms of random-access iterators over the matrices and vectors of (QP). Zero entries therefore play no special role and are treated like all other entries by the interface.

This has mainly historical reasons: the original motivation behind this package was low-dimensional geometric optimization where a dense representation is appropriate and efficient. In fact, the CGAL packages Min_annulus_d<Traits> and Polytope_distance_d<Traits> internally use the linear and quadratic programming solver.

As a user, however, you don't necessarily have to provide a dense representation of your program. You do not pass vectors or matrices to the solution functions, but rather specify the vectors and matrices through iterators. The iterator abstraction easily allows to build models that convert a sparse representation into a dense interface. The predefined models Quadratic_program<NT> and Quadratic_program_from_mps<NT> do exactly this; in using them, you can forget about the dense interface.

Nevertheless, if you care about efficiency, you cannot completely ignore the issue. If you think about a quadratic program in n variables and m constraints, its dense interface has Θ(n2+mn) entries, even if actually very few of them are nonzero. This has consequences for the complexity of the internal computations. In fact, a single iteration of the solution process has complexity at least Ω(mn), since usually, all entries of the matrix A are accessed. This implies that problems where min(n,m) is large cannot be solved efficiently, even if the number of nonzero entries in the problem description is very small.

 

QuadraticProgram概念(和其餘特定的規劃)要求一個稠密的接口(dense interface),稱爲(QP)的矩陣和向量上的隨機存取迭代器(random-access iterators over the matrices and vectors of (QP).)。所以0項(entries)被該接口與其餘(entries)一樣對待。

這主要是歷史緣由:本包的設計初衷是在低維的幾何優化中一個稠密的表示(dense representation)是合理且高效的。CGAL中Min_annulus_d<Traits>和 Polytope_distance_d<Traits>包內部使用了線性和二次規劃解析器。

做爲一個用戶,你沒必要要爲你的規劃提供一個稠密的表示(dense representation)。你不將向量或矩陣傳入解函數,但須要經過迭代器來指定向量和矩陣。迭代器抽象容易創建模型,將稀疏表示(sparse representation)轉換成稠密表示(dense representation)。預先定義的模型 Quadratic_program<NT> 和 Quadratic_program_from_mps<NT> 就是完成這一過程的。使用它們,你能夠再也不考慮稠密表示。

可是,若是你對效率很關心。你不能徹底忽視這一問題。若是考慮一個n個變量和m個約束條件的二次規劃問題,其稠密接口的有 Θ(n2+mn)項,即便其中只有不多項不爲0。這將致使複雜的內部運算。實際上,解析過程當中單個迭代的複雜度至少爲Ω(mn)。由於一般M矩陣全部的項被處理,意味着這個問題將不能被高效地解決(其min(m,n)很大)即便非零項的數量很是小。

 

We can actually be quite precise about performance, in terms of the following parameters.

n
the number of variables (or columns of  A),
m
the number of constraints (or rows of  A)
e
the number of equality constraints,
r
the rank of the quadratic objective function matrix  D.

The time required to solve the problems is in most cases linear in max(n,m), but with a factor heavily depending on min(n,e)+r. Therefore, the solver will be efficient only if min(n,e)+r is small.

Here are the scenarios in which this applies:

  • Quadratic programs with a small number of variables, but possibly a large number of inequality constraints,
  • Linear programs with a small number of equality constraints but possibly a large number of variables,
  • Quadratic programs with a small number of equality constraints and D of small rank, but possibly with a large number of variables.

How small is small? If min(n,e)+r is up to 10, the solver will probably be very fast, even if max(n,m) goes into the millions. If min(n,m)+r is up to a few hundreds, you may still get a solution within reasonable time, depending on the problem characteristics.

If you have a problem where both n and e are well above 1,000, say, then chances are high that CGAL cannot solve it within reasonable time.

咱們能夠十分準確地調整負荷和表現,經過下列參數:

n : 變量的數量(或矩陣A的列數)

m : 約束的數量 (或A的行數)

e : 等於約束的數量

r : 二次目標函數矩陣D的秩

解決這一問題的時間在大多數狀況下是max(m,n)的線性值,但其中一個因子很是依賴於min(n,e)+r。因此,解析器只有在min(n,e)+r小的時候才能高效運行。

下面是可用的場景:

  • 小變量規模的二次規劃,但也可能用於大數量的不等的約束時。Quadratic programs with a small number of variables, but possibly a large number of inequality constraints,
  • 具備小規模的相等約束的但可能具備較多變量的線性規劃。Linear programs with a small number of equality constraints but possibly a large number of variables,
  • 具備小數量的相等約束並D的秩是小的,可是可能具備大數量的變量。Quadratic programs with a small number of equality constraints and D of small rank, but possibly with a large number of variables.

多少就是咱們說的少呢?若是min(n,e)+r 達到了10,解析器將可能會很是快,即便max(n,m)達到了百萬。若是min(n,m)+r達到了幾百,你仍可能在較理想的時間內完成解,這依賴於問題的特徵(problem characteristics)。 

若是問題的n和e達到了1000,則CGAL可能會大機率下不能在可期的時間內完成解。

 

2.2 Robustness

Given that you use an exact number type in the function solve_quadratic_program (or in the other, specialized solution functions), the solver will give you exact rational output, for every convex quadratic program. It may fail to compute a solution only if

  1. The quadratic program is too large (see the previous subsection on efficiency).
  2. The quadratic objective function matrix D is not positive-semidefinite (see the discussion below).
  3. The floating-point filter used by default for certain programs and input type double fails due to a double exponent overflow. This happens in rare cases only, and it does not pay off to sacrifice the efficiency of the filtered approach in order to cope with these rare cases. There are means, however, to avoid such problems by switching to a slower non-filtered variant, see Section Exponent Overflow in Double Using Floating-Point Filters.
  4. The solver internally cycles. This also happens in rare cases only. However, if you have a hunch that the solver cycles on your problem, there are means to switch to a slower variant that is guaranteed not to cycle, see Section The Solver Internally Cycles.

The second item merits special attention. First, you may ask why the solver does not check that D is positive semidefinite. But recall that D is given by a dense interface, and it would therefore cost Ω(n2) time already to access all entries of the matrix D. The solver itself gets away with accessing much less entries of D in the relevant case where r, the rank of D, is small.

Nevertheless, the solver contains some runtime checks that may detect that the matrix D is not positive-semidefinite. But you may as well get an "optimal solution" in this case, even with valid certificates. The validity of these certificates, however, depends on D being positive-semidefinite; if this is not the case, the certificates only prove that the solver has found a "critical point" of your (nonconvex) program, but there are no guarantees whatsoever that this is a global optimum, or even a local optimum.

 

對於每一個凸集二次規劃,假定你使用一個精確數據類型( exact number type i),函數solve_quadratic_program(或其餘特定的解函數)將會給你一個精確的有理輸出。可能出現沒法得出計算結果的狀況只有:

  1. 二次規模規模太大(見效率節)。
  2. 二次目標函數矩陣D不是半正定的(見下面討論)。
  3. 特色規劃使用的缺省浮點過濾器和輸入的double類型因double類型的指數而溢出。這種狀況不多發生,因此沒必要要付出下降效率的代價去改變浮點過濾算法。有規避這種狀況的方法,即將算法切換到較慢的無過濾模式下(見Exponent Overflow in Double Using Floating-Point Filters)。
  4. 解析器內部(死)循環。這種狀況也不常發生,但若是你直覺解析器出現了循環,則能夠經過切換到無過濾模式而避免循環(見The Solver Internally Cycles節)。

第二項須要特別注意。首先,你能夠問爲何解析器不去檢查D是否爲半正定。但前面咱們說過,矩陣D是由稠密接口給出的,因此遍歷D全部項須要的時間爲Ω(n2) ,而解析器自己爲了下降運算強度只在矩陣的秩r小時才勉強(gets away with)躲避了處理D中的大量項。可是解析器中仍然有一些運行時檢查來斷定D是否爲半正定的。但這種狀況下,你也只是獲得一個「優化的解」,即便使用合法的憑據(certificates)。憑據的合法性依賴D是否半正定,若是不是這樣的,憑據只能證實解析器找到你的(非凸集)規劃的一個「關鍵點」(「critical point」),它並不能保證全局的最優,甚至也不能保證局部最優。

 

How to Enter and Solve a Program

In this section, we describe how you can supply and solve your problem, using the CGAL program models and solution functions. There are two essentially different ways to proceed, and we will discuss them in turn. In short,

  • you can let the model take care of your program data; you start from an empty program and then simply insert the non-zero entries, or read them from a file (more generally, any input stream) in MPSFormat. You can also change program entries at any time. This is usually the most convenient way if you don't want to care about representation issues;
  • you can maintain the data yourself and only supply suitable random-access iterators over the matrices and vectors. This is advantageous if you already have the data (explicitly, or implicitly encoded, for example through iterators) and want to avoid copying of data. Typically, this happens if you write generic iterator-based code.

Our running example is the following quadratic program in two variables:

 

本節描述如何使用CGAL規劃模型和解函數呈現並解決問題。有兩種不一樣的方式:

  • 你可讓模型來負責你的規劃數據,從一個空的規劃開始只輸入非零項,或從MPSFormat格式文件中讀取(也能夠是任何流輸入)。你也可在任什麼時候候改變規劃項。若是你不想關照表示問題,這一般是最方便的方式;
  • 你能夠本身維護你的數據,只提供矩陣或向量的合適的隨機存取迭代器(random-access iterators)。這是很是具備優點的,由於你已經擁有了數據(它們是顯式地或隱式地被編碼,如經過迭代器)而且不但願複製數據。典型的狀況是,若是你寫基於通用迭代器的代碼時,你正在使用此方法;

 

Figure 7.1 shows a picture. It depicts the five inequalities of the program, along with the feasible region (green), the set of points that satisfy all the five constraints. The dashed elliptic curves represent contour lines of the objective function, i.e., along each dashed curve, the objective function value is constant.

The global minimum of the objective function is attained at the point (0,4), and the minimum within the feasible region appears at the point (2,3) marked with a black dot. The value of the objective function at this optimal solution is 22+4(34)2=8.

 

 

圖中顯示了可行區域feasible region (green)內5個不等約束條件的規劃 。可行區域是知足全部5個約束的點集。虛線橢圓曲線表示目標函數的輪廓線,對於 每條輪廓線目標函數值 是常數。

目標函數的全局最小值在點(0,4)處得到,而在可行區域內則在點(2,3)上取得最小值(黑點表示)。目標函數的最優值是22+4(34)2=8。

 

3.1 Constructing a Program from Data

Here is how this quadratic program can be solved in CGAL according to the first way (letting the model take care of the data). We use int as the input type, and MP_Float or Gmpz (which is faster and preferable if GMP is installed) as the exact type for the internal computations. In larger examples, it pays off to use double as input type in order to profit from the automatic floating-point filtering that takes place then.

For examples how to work with the input type double, we refer to Sections Working from Iterators and Customizing the Solver.

Note: For the quadratic objective function, the entries of the matrix 2D have to be provided, rather than D. Although this is common to almost all quadratic programming solvers, it can easily be overlooked by a novice.

這裏介紹第一種解決方法,即讓模型來管理數據。咱們採用int爲輸入類型,MP_Float 或 Gmpz爲內部計算的精確類型。在更大的例子中,爲了獲得使用自動浮點過濾器的好處,咱們採用double爲輸入類型,此類例子參見 Working from Iterators 和 Customizing the Solver節。

注意:二次目標函數的矩陣必須是2D,而非D(For the quadratic objective function, the entries of the matrix 2D have to be provided, rather than D),雖然對於 二次規劃解析器這是常規,但它很容易被初學者忽視。

 

 

File QP_solver/first_qp.cpp

// example: construct a quadratic program from data
// the QP below is the first quadratic program example in the user manual
#include <iostream>
#include <cassert>
#include <CGAL/basic.h>
#include <CGAL/QP_models.h>
#include <CGAL/QP_functions.h>
 
// choose exact integral type
#ifdef CGAL_USE_GMP
#include <CGAL/Gmpz.h>
typedef CGAL::Gmpz ET;
#else
#include <CGAL/MP_Float.h>
typedef CGAL::MP_Float ET;
#endif
 
// program and solution types
typedef CGAL::Quadratic_program<int> Program;
 
int main() {
// by default, we have a nonnegative QP with Ax <= b
Program qp ( CGAL::SMALLER, true, 0, false, 0);
 
// now set the non-default entries:
const int X = 0;
const int Y = 1;
qp.set_a(X, 0, 1); qp.set_a(Y, 0, 1); qp.set_b(0, 7); // x + y <= 7
qp.set_a(X, 1, -1); qp.set_a(Y, 1, 2); qp.set_b(1, 4); // -x + 2y <= 4
qp.set_u(Y, true, 4); // y <= 4
qp.set_d(X, X, 2); qp.set_d (Y, Y, 8); // !!specify 2D!! x^2 + 4 y^2
qp.set_c(Y, -32); // -32y
qp.set_c0(64); // +64
 
// solve the program, using ET as the exact type
Solution s = CGAL::solve_quadratic_program(qp, ET());
assert (s.solves_quadratic_program(qp));
 
// output solution
std::cout << s;
return 0;
}
 

If GMP is not installed, the values are of course the same, but numerator and denominator might have a common divisor that is not factored out.

若是GMP沒有安裝,結果是同樣的,但分子和分母可能沒有進行約分。

3.2 Constructing a Program from a Stream

Here, the program data must be available in MPSFormat (the MPSFormat page shows how our running example looks like in this format, and it briefly explains the format). Assuming that your working directory contains the file first_qp.mps, the following program will read and solve it, with the same output as before.

 這裏規劃數據必須由MPSFormat格式獲得 (MPSFormat節介紹本節例子中的格式)。假定你的工做目錄下有一個first_qp.mps,下面的程序將讀入並解析它,生成輸出。

File QP_solver/first_qp_from_mps.cpp

// example: read quadratic program in MPS format from file
// the QP below is the first quadratic program example in the user manual
#include <iostream>
#include <fstream>
#include <CGAL/basic.h>
#include <CGAL/QP_models.h>
#include <CGAL/QP_functions.h>
 
// choose exact integral type
#ifdef CGAL_USE_GMP
#include <CGAL/Gmpz.h>
typedef CGAL::Gmpz ET;
#else
#include <CGAL/MP_Float.h>
typedef CGAL::MP_Float ET;
#endif
 
// program and solution types
 
int main() {
std::ifstream in ( "first_qp.mps");
Program qp(in); // read program from file
assert (qp.is_valid()); // we should have a valid mps file
 
// solve the program, using ET as the exact type
Solution s = CGAL::solve_quadratic_program(qp, ET());
 
// output solution
std::cout << s;
return 0;
}
 

3.3 Constructing a Program from Iterators

The following program again solves our running example from above, with the same output, but this time with iterators over data stored in suitable containers. You can see that we also store zero entries here (in  D). For this toy problem, the previous two approaches (program from data/stream) are clearly preferable, but Section Working from Iterators shows an example where it makes sense to use the iterator-based approach.
下面的程序與上面解決的問題相同,但經過合適容器的相關迭代器。你能夠看到咱們也將0項保存在D矩陣中。對於本例,前面的兩個方式 (輸入數據爲data和stream)更加好,但  Working from Iterators節顯示了迭代器方法在什麼地方更加合理。
// example: construct a quadratic program from given iterators
// the QP below is the first quadratic program example in the user manual
#include <iostream>
#include <CGAL/basic.h>
#include <CGAL/QP_models.h>
#include <CGAL/QP_functions.h>
 
// choose exact integral type
#ifdef CGAL_USE_GMP
#include <CGAL/Gmpz.h>
typedef CGAL::Gmpz ET;
#else
#include <CGAL/MP_Float.h>
typedef CGAL::MP_Float ET;
#endif
 
// program and solution types
< int**, // for A
int*, // for b
bool*, // for fl
int*, // for l
bool*, // for fu
int*, // for u
int**, // for D
int*> // for c
Program;
 
int main() {
int Ax[] = {1, -1}; // column for x
int Ay[] = {1, 2}; // column for y
int* A[] = {Ax, Ay}; // A comes columnwise
int b[] = {7, 4}; // right-hand side
CGAL::Const_oneset_iterator<CGAL::Comparison_result>
r( CGAL::SMALLER); // constraints are "<="
bool fl[] = {true, true}; // both x, y are lower-bounded
int l[] = {0, 0};
bool fu[] = {false, true}; // only y is upper-bounded
int u[] = {0, 4}; // x's u-entry is ignored
int D1[] = {2}; // 2D_{1,1}
int D2[] = {0, 8}; // 2D_{2,1}, 2D_{2,2}
int* D[] = {D1, D2}; // D-entries on/below diagonal
int c[] = {0, -32};
int c0 = 64; // constant term
 
// now construct the quadratic program; the first two parameters are
// the number of variables and the number of constraints (rows of A)
Program qp (2, 2, A, b, r, fl, l, fu, u, D, c, c0);
 
// solve the program, using ET as the exact type
Solution s = CGAL::solve_quadratic_program(qp, ET());
 
// output solution
std::cout << s;
return 0;
}

Note 1: The example shows an interesting feature of this approach: not all data need to come from containers. Here, the iterator over the vector of relations can be provided through the class Const_oneset_iterator<T>, since all entries of this vector are equal to SMALLER. The same could have been done with the vector fl for the finiteness of the lower bounds.

Note 2: The program type looks a bit scary, with its total of 9 template arguments, one for each iterator type. In Section Using Makers we show how the explicit construction of this type can be circumvented.

注意1: 這個方法的有趣之處是:不是全部的數據來自容器。經過類Const_oneset_iterator<T>能夠提供關係向量所需的迭代器,由於向量的全部項都與SMALLER相等。對於f1向量下界的有限性作了一樣的處理。

注意2: 本規劃類型看樣子有點唬人,有9個模板參數,每一個迭代器類型一個參數。在Using Makers 節咱們展現如何繞過(circumvent)這種顯式的建立過程。

Solving Linear and Nonnegative Programs

Let us reconsider the general form of (QP) from Section Which Programs can be Solved? above. If D=0, the quadratic program is in fact a linear program, and in the case that the bound vectors l is the zero vector and all entries of u are , the program is said to be nonnegative. The package offers dedicated models and solution methods for these special cases.

From an interface perspective, this is just syntactic sugar: in the model Quadratic_program<NT>, we can easily set the default bounds so that a nonnegative program results, and a linear program is obtained by simply not inserting any D-entries. Even in the iterator-based approach (see QP_solver/first_qp_from_iterators.cpp), linear and nonnegative programs can easily be defined through suitable Const_oneset_iterator<T>-style iterators.

The main reason for having dedicated solution methods for linear and nonnegative programs is efficiency: if the solver knows that the program is linear, it can save some computations compared to the general solver that unknowingly has to fiddle around with a zero D-matrix. As in Section Robustness above, we can argue that checking in advance whether D=0 is not an option in general, since this may require Ω(n2) time on the dense interface.

Similarly, if the solver knows that the program is nonnegative, it will be more efficient than under the general bounds lxu. You can argue that nonnegativity is something that could easily be checked in time O(n)beforehand, but then again nonnegative programs are so frequent that the syntactic sugar aspect becomes somewhat important. After all, we can save four iterators in specifying a nonnegative linear program in terms of the concept NonnegativeLinearProgram rather than LinearProgram.

Often, there are no bounds at all for the variables, i.e., all entries of l are , and all entries of u are  (this is called a free program). There is no dedicated solution method for this case (a free quadratic or linear program is treated like a general quadratic or linear program), but all predefined models make it easy to specify all sorts of default bounds, covering the free case.

 
讓咱們考慮上面 Which Programs can be Solved?節提出的(QP)問題的通用形式。 若是D=0,則二次規劃是一個線性規劃。當邊界向量I是零向量而且u的全部項爲  ,這樣的規劃被稱爲非負的( nonnegative)。本包爲此特殊類型提供了專門的模型和方法。
從接口視角,這只是在說法上比較容易(syntactic sugar:):在模型中,咱們很容易經過設置缺省邊界值獲得一個非負規劃(nonnegative program),一個線性規劃則經過不插入任何D項獲得。即便在基於迭代器的方法中 (見  QP_solver/first_qp_from_iterators.cpp),線性和非負規劃能夠輕易地經過合適的 Const_oneset_iterator<T>樣式迭代器獲得。
用專門的方法解決線性和非負規劃問題的緣由在於效率:若是解析器知道這一規劃是線性的,則能夠節約一些計算資源,由於不須要對沒必要要的矩陣進行糾纏。正如上面 Robustness 節提到的,能夠提早檢查D是否爲0是不恰當的,由於當稠密接口時這須要Ω (n2)時間。
一樣,當解析器知道當前的規劃是非負的,則它的效率將比lxu存在上下界時提升不少。因此咱們使用概念NonnegativeLinearProgram 而不使用 LinearProgram
不少狀況下,變量根本就沒有界,即 全部的項爲−,u全部的項爲∞,這種狀況即爲自由規劃(free program)。沒有專門的方法用於這種狀況(一個自由二次規劃或線性二次規劃被看成一個通用的二次規劃或線性規劃),但全部的全部的預約義的模型使指定全部類型的缺省界變得容易,也包括了自由規劃的狀況。
 
 

4.1 The Linear Programming Solver

Let's go back to our first quadratic program from above and change it into a linear program by simply removing the quadratic part of the objective function:

線性規劃由二次規劃轉化過來,只需去掉目標函數中的二次項:

 Figure 7.2 shows how this looks like. We will not visualize a linear objective function with contour lines but with arrows instead. The arrow represents the (direction) of the vector c, and we are looking for a feasible solution that is "extreme" in the direction of the arrow. In our small example, this is the unique point "on" the two constraints x1+x27 and x1+x24, the point (10/3,11/3) marked with a black dot. The optimal objective function value is 32(11/3)+64=160/3.

 圖中給出了線性規劃的形態。咱們採用一個箭標表示線性目標函數。箭頭表示向量−c的(方向),咱們正在尋找一個可行的解,這個解在箭頭方向上是一個「極值」。在咱們的例子中,這個「極值」爲圖上黑點標識的點,它處於兩個約束 x1+x27和−x1+x24的交點 (10/3,11/3上。其最優目標函數值是−32(11/3)+64=160/3。

 

Here is CGAL code for solving it, using the dedicated LP solver, and according to the three ways for constructing a program that we have already discussed in Section How to Enter and Solve a Program.

QP_solver/first_lp.cpp

QP_solver/first_lp_from_mps.cpp

QP_solver/first_lp_from_iterators.cpp

In all cases, the output is

status: OPTIMAL
objective value: -160/3
variable values:
0: 10/3
1: 11/3

 這裏是CGAL解的代碼,使用了LP解析器,使用了How to Enter and Solve a Program節的三種方法

 

4.2 The Nonnegative Quadratic Programming Solver

If we go back to our first quadratic program and remove the constraint y4, we arrive at a nonnegative quadratic program: 

在上面的例子中去除 y4,就獲得一個非負二次規劃。

 

 Figure 7.3 contains the illustration; since the constraint y4 was redundant, the feasible region and the optimal solution do not change.

圖中顯示:由於 y4,是冗餘的,因此可行區域和最優解沒有變化 

 

The following programs (using the dedicated solver for nonnegative quadratic programs) will therefore again output

status: OPTIMAL
objective value: 8/1
variable values:
0: 2/1
1: 3/1

QP_solver/first_nonnegative_qp.cpp

QP_solver/first_nonnegative_qp_from_mps.cpp

QP_solver/first_nonnegative_qp_from_iterators.cpp

 

4.3 The Nonnegative Linear Programming Solver

Finally, a dedicated model and function is available for nonnnegative linear programs as well. Let's take our linear program from above and remove the constraint y4 to obtain a nonnegative linear program. At the same time we remove the constant objective function term to get a "minimal" input and a "shortest" program; the optimal value is 32(11/3)=352/3.

最後,是專門爲非負線性規劃提供的模型和函數。本例始於上面的例子並去掉了約束y4獲得了一個非負線性規劃。同時,咱們去除目錄函數的常數項獲得一個「最小」輸入和一個「最短」規劃,其最優值是−32(11/3)=352/3

 

This can be solved by any of the following three programs

QP_solver/first_nonnegative_lp.cpp

QP_solver/first_nonnegative_lp_from_mps.cpp

QP_solver/first_nonnegative_lp_from_iterators.cpp

The output will always be

status: OPTIMAL
objective value: -352/3
variable values:
0: 10/3
1: 11/3

Working from Iterators

Here we present a somewhat more advanced example that emphasizes the usefulness of solving linear and quadratic programs from iterators. Let's look at a situation in which a linear program is given implicitly, and access to it is gained through properly constructed iterators.

The problem we are going to solve is the following: given points p1,pn in d-dimensional space and another point p: is p in the convex hull of {p1,,pn}? In formulas, this is the case if and only if there are real coefficients λ1,,λn such that p is a convex combination of p1,,pn:

 

The problem of testing the existence of such λj can be expressed as a linear program. It becomes particularly easy when we use the homogeneous representations of the points: if q1,,qn,qRd+1 are homogeneous coordinates for p1,,pn,p with positive homogenizing coordinates h1,,hn,h, we have

 

Now, nonnegative λ1,,λn are suitable coefficients for a convex combination if and only if

 

equivalently, if there are μ1,,μn (with μj=λjh/hj for all j) such that

The linear program now tests for the existence of nonnegative μj that satisfy the latter equation. Below is the code; it defines a function that solves the linear program, given p and p1,,pn (through an iterator range). The only (mild) trickery involved is the construction of the nested iterator through a fixed column of the constraint matrix A. We get this from transforming the iterator through the points using a functor that maps a point to an iterator through its homogeneous coordinates.

這裏咱們給出一個更加高級的例子,它強調在解決線性或二次規劃時迭代器的做用。當給出兵線性規劃是隱含的,而且經過建立合適的迭代器來接入問題。

咱們的問題以下:給定d維空間的點集p1,pn和另外一個點p,肯定p點是否在{p1,pn}點集造成的凸包(convex hull)中? 由定理得知,當且僅當存在一個實數系統集λ1,,λn 使得p是p1,pn的凸組合

時本問題成立。

而測試是否存在的問題能夠表達爲一個線性規劃問題。若是q1,,qn,qRd+1是具備正齊次化座標h1,,hn,h的點p1,,pn,p的齊次座標,咱們使用齊次座標表示點就十分方便(It becomes particularly easy when we use the homogeneous representations of the points: if q1,,qn,qRd+1 are homogeneous coordinates for p1,,pn,p with positive homogenizing coordinates h1,,hn,h。咱們有:

若是存在一組係數 λ1,,λn ,當且僅當


時,則 λ1,,λn 是適合的非負的凸組合係數。

一樣地,若是有一組數 μ1,,μn (對於 全部的j有 μj=λjh/hj ) 知足

 

如今,線性規劃測試知足最後等式的非負的 μ是否存在,下面是其代碼;它定義了一個給定p和p1,pn(經過iterator給出)解線性規劃的函數。這裏有點技巧的是經過一個固定列的約束矩陣A建立內嵌的(nested iterator)迭代器。咱們經過(We get this from transforming the iterator through the points using a functor that maps a point to an iterator through its homogeneous coordinates)

 

 

File QP_solver/solve_convex_hull_containment_lp.h

// example: function to check whether a point is in the convex
// hull of other points
#include <CGAL/QP_models.h>
#include <CGAL/QP_functions.h>
 
// unary function to get homogeneous begin-iterator of point
template <class Point_d>
struct Homogeneous_begin {
typedef typename Point_d::Homogeneous_const_iterator result_type;
result_type operator() ( const Point_d& p) const {
return p.homogeneous_begin();
}
};
 
// function to solve the LP that tests whether a point is in the
// convex hull of other points; the type ET is an exact type used
// for the internal computations
template <class Point_d, class RandomAccessIterator, class ET>
solve_convex_hull_containment_lp ( const Point_d& p,
RandomAccessIterator end, const ET& dummy)
{
// Constraint matrix type: A[j][i] is the i-th homogeneous coordinate of p_j
typedef boost::transform_iterator
<Homogeneous_begin<Point_d>, RandomAccessIterator> A_it;
// Right-hand side type: b[i] is the i-th homogeneous coordinate of p
typedef typename Point_d::Homogeneous_const_iterator B_it;
// Relation type ("=")
typedef CGAL::Const_oneset_iterator<CGAL::Comparison_result> R_it;
// input number type
// Linear objective function type (c=0: we only test feasibility)
// the nonnegative linear program type
typedef
Program;
 
// ok, we are prepared now: construct program and solve it
Program lp (static_cast<int>(end-begin), // number of variables
p.dimension()+1, // number of constraints
A_it (begin), B_it (p.homogeneous_begin()),
R_it ( CGAL::EQUAL), C_it (0));
}

To see this in action, let us call it with p1=(0,0),p2=(10,0),p3=(0,10) fixed (they define a triangle) and all integral points p in [0,10]2. We know that p is in the convex hull of {p1,p2,p3} if and only if its two coordinates sum up to 10 at most. As the exact type, we use MP_Float or Gmpzf (which is faster and preferable if GMP is installed).


File QP_solver/convex_hull_containment.cpp

// Example: check whether a point is in the convex hull of other points
#include <cassert>
#include <vector>
#include <CGAL/Cartesian_d.h>
#include <CGAL/MP_Float.h>
#include "solve_convex_hull_containment_lp.h"
 
// choose exact floating-point type
#ifdef CGAL_USE_GMP
#include <CGAL/Gmpzf.h>
typedef CGAL::Gmpzf ET;
#else
#include <CGAL/MP_Float.h>
typedef CGAL::MP_Float ET;
#endif
 
typedef CGAL::Cartesian_d<double> Kernel_d;
typedef Kernel_d::Point_d Point_d;
 
bool is_in_convex_hull (const Point_d& p,
std::vector<Point_d>::const_iterator begin,
std::vector<Point_d>::const_iterator end)
{
solve_convex_hull_containment_lp (p, begin, end, ET(0));
return !s.is_infeasible();
}
 
int main()
{
std::vector<Point_d> points;
// convex hull: simplex spanned by {(0,0), (10,0), (0,10)}
points.push_back (Point_d ( 0.0, 0.0));
points.push_back (Point_d (10.0, 0.0));
points.push_back (Point_d ( 0.0, 10.0));
for (int i=0; i<=10; ++i)
for (int j=0; j<=10; ++j) {
// (i,j) is in the simplex iff i+j <= 10
bool contained = is_in_convex_hull
(Point_d (i, j), points.begin(), points.end());
assert (contained == (i+j<=10));
}
 
return 0;
}

 

5.1 Using Makers

You already noticed in the previous example that the actual template arguments for Nonnegative_linear_program_from_iterators<A_it, B_it, R_it, C_it> can be quite elaborate, and this only gets worse if you plug more iterators into each other. In general, you want to construct a program from given expressions for the iterators, but the types of these expressions are probably very complicated and difficult to look up.

You can avoid the explicit construction of the type Nonnegative_linear_program_from_iterators<A_it, B_it, R_it, C_it> if you only need an expression of it, e.g. to pass it directly as an argument to the solving function. Here is an alternative version of QP_solver/solve_convex_hull_containment_lp.h that shows how this works. In effect, you get shorter and more readable code.

前一個例子中,你已經注意到Nonnegative_linear_program_from_iterators<A_it, B_it, R_it, C_it>的實際模板參數至關複雜。若是你在它們之間插入更多的iterator後。一般,咱們想經過一個給定的關於iterator的表達式建立一個規劃,可是表達式的類型可能會很是複雜並難以查找。

若是你只須要一個它的表達式,能夠經過將它做爲參數傳遞到解析函數就能夠避免顯式地建立Nonnegative_linear_program_from_iterators<A_it, B_it, R_it, C_it>類型。這裏有一個QP_solver/solve_convex_hull_containment_lp.h的替代版本就是展現其方法的。經過這個方法能夠獲得更加可讀的代碼。
File QP_solver/solve_convex_hull_containment_lp2.h

// example: function to check whether a point is in the convex
// hull of other points; this version uses a maker
#include <CGAL/boost/iterator/transform_iterator.hpp>
#include <CGAL/Kernel_traits.h>
#include <CGAL/QP_models.h>
#include <CGAL/QP_functions.h>
 
// unary function to get homogeneous begin-iterator of point
template <class Point_d>
struct Homogeneous_begin {
typedef typename Point_d::Homogeneous_const_iterator result_type;
result_type operator() ( const Point_d& p) const {
return p.homogeneous_begin();
}
};
 
// function to test whether point is in the convex hull of other points;
// the type ET is an exact type used for the computations
template <class Point_d, class RandomAccessIterator, class ET>
solve_convex_hull_containment_lp ( const Point_d& p,
RandomAccessIterator end, const ET& dummy)
{
// construct program and solve it
(static_cast<int>(end-begin), // n
p.dimension()+1, // m
boost::transform_iterator
<Homogeneous_begin<Point_d>, RandomAccessIterator>(begin), // A
typename Point_d::Homogeneous_const_iterator (p.homogeneous_begin()),// b
CGAL::Const_oneset_iterator<CGAL::Comparison_result>( CGAL::EQUAL), // ~
< typename CGAL::Kernel_traits<Point_d>::Kernel::RT> (0)), dummy); // c
}

Important Variables and Constraints

If you have a solution x of a linear or quadratic program, the "important" variables are typically the ones that are not on their bounds. In case of a nonnegative program, these are the nonzero variables. Going back to the example of the previous Section Working from Iterators, we can easily interpret their importance: the nonzero variables correspond to points pj that actually contribute to the convex combination that yields p.

The following example shows how we can access the important variables, using the iterators basic_variable_indices_begin() and basic_variable_indices_end().

We generate a set of points that form a 4-gon in [0,4]2, and then find the ones that contribute to the convex combinations of all 25 lattice points in [0,4]2. If the lattice point in question is not in the 4-gon, we simply output this fact.

若是你有線性或二次規劃的一個解x,「重要的」變量是哪些典型地在邊界以外的變量。在非負規劃的狀況,有非零變量。Working from Iterators節的例子中,咱們能夠容易解釋它們的重要性:非零變量與生成關於p的凸組合作出實際貢獻的pj對應。(Going back to the example of the previous Section Working from Iterators, we can easily interpret their importance: the nonzero variables correspond to points pj that actually contribute to the convex combination that yields p


File QP_solver/important_variables.cpp

// Example: find the points that contribute to a convex combination
#include <cassert>
#include <vector>
#include <CGAL/Cartesian_d.h>
#include <CGAL/MP_Float.h>
#include "solve_convex_hull_containment_lp2.h"
 
typedef CGAL::Cartesian_d<double> Kernel_d;
typedef Kernel_d::Point_d Point_d;
 
int main()
{
std::vector<Point_d> points;
// convex hull: 4-gon spanned by {(1,0), (4,1), (4,4), (2,3)}
points.push_back (Point_d (1, 0)); // point 0
points.push_back (Point_d (4, 1)); // point 1
points.push_back (Point_d (4, 4)); // point 2
points.push_back (Point_d (2, 3)); // point 3
 
// test all 25 integer points in [0,4]^2
for (int i=0; i<=4; ++i)
for (int j=0; j<=4; ++j) {
Point_d p (i, j);
Solution s = solve_convex_hull_containment_lp
(p, points.begin(), points.end(), CGAL::MP_Float());
std::cout << p;
if (s.is_infeasible())
std::cout << " is not in the convex hull\n";
else {
assert (s.is_optimal());
std::cout << " is a convex combination of the points ";
Solution::Index_iterator it = s. basic_variable_indices_begin();
Solution::Index_iterator end = s.basic_variable_indices_end();
for (; it != end; ++it) std::cout << *it << " ";
std::cout << std::endl;
}
}
return 0;
}

It turns out that exactly three of the four points contribute to any convex combination, even through there are lattice points that lie in the convex hull of less than three of the points. This shows that the set of basic variables that we access in the example does not necessarily coincide with the set of important variables as defined above. In fact, it is only guaranteed that a non-basic variable attains one of its bounds, but there might be basic variables that also have this property. In linear and quadratic programming terms, such a situation is called a degeneracy.

There is also the concept of an important constraint: this is typically a constraint in the system Axb that is satisfied with equality at x. Program QP_solver/first_qp_basic_constraints.cpp shows how these can be accessed, using the iterators basic_constraint_indices_begin() and basic_constraint_indices_end().

Again, we have a disagreement between "basic" and "important": it is guaranteed that all basic constraints are satisfied with equality at x, but there might be non-basic constraints that are satisfied with equality as well.

結果是四個點中的三個對任意 凸組合有貢獻,即便存在格點處於少於3個點的凸包內(even through there are lattice points that lie in the convex hull of less than three of the points)

Solution Certificates

Suppose the solver tells you that the problem you have entered is infeasible. Why should you believe this? Similarly, you can quite easily verify that a claimed optimal solution is feasible, but why is there no better one?

Certificates are proofs that the solver can give you in order to convince you that what it claims is indeed true. The archetype of such a proof is Farkas Lemma [1].

Farkas Lemma: Either the inequality system

 

has a solution xor there exists a vector y such that

but not both.

Thus, if someone wants to convince you that the first system in the Farkas Lemma is infeasible, that person can simply give you a vector y that solves the second system. Since you can easily verify yourself that the y you got satisfies this second system, you now have a certificate for the infeasibility of the first system, assuming that you believe in Farkas Lemma.

Here we show how the solver can convince you. We first set up an infeasible linear program with constraints of the type Axb,x0; then we solve it and ask for a certificate. Finally, we verify the certificate by simply checking the inequalities of the second system in Farkas Lemma.


File QP_solver/infeasibility_certificate.cpp

// example: extracting and verifying a proof of infeasibility from the solution
#include <cassert>
#include <CGAL/basic.h>
#include <CGAL/QP_models.h>
#include <CGAL/QP_functions.h>
 
// choose exact integral type
#ifdef CGAL_USE_GMP
#include <CGAL/Gmpz.h>
typedef CGAL::Gmpz ET;
#else
#include <CGAL/MP_Float.h>
typedef CGAL::MP_Float ET;
#endif
 
// program and solution types
< int**, // for A
int*, // for b
int*> // for c
Program;
 
// we demonstrate Farkas Lemma: either the system
// A x <= b
// x >= 0
// has a solution, or there exists y such that
// y >= 0
// y^TA >= 0
// y^Tb < 0
// In the following instance, the first system has no solution,
// since adding up the two inequalities gives x_2 <= -1:
// x_1 - 2x_2 <= 1
// -x_1 + 3x_2 <= -2
// x_1, x_2 >= 0
 
int main() {
int Ax1[] = { 1, -1}; // column for x1
int Ax2[] = {-2, 3}; // column for x2
int* A[] = {Ax1, Ax2}; // A comes columnwise
int b[] = {1, -2}; // right-hand side
CGAL::Comparison_result
r[] = { CGAL::SMALLER, CGAL::SMALLER}; // constraints are "<="
int c[] = {0, 0}; // zero objective function
 
// now construct the linear program; the first two parameters are
// the number of variables and the number of constraints (rows of A)
Program lp (2, 2, A, b, r, c);
 
// solve the program, using ET as the exact type
Solution s = CGAL::solve_nonnegative_linear_program(lp, ET());
 
// get certificate for infeasibility
assert (s.is_infeasible());
Solution::Infeasibility_certificate_iterator y =
s.infeasibility_certificate_begin();
// check y >= 0
assert (ET(y[0]) >= 0);
assert (ET(y[1]) >= 0);
// check y^T A >= 0
assert (ET(y[0]) * A[0][0] + ET(y[1]) * A[0][1] >= 0);
assert (ET(y[0]) * A[1][0] + ET(y[1]) * A[1][1] >= 0);
// check y^T b < 0
assert (ET(y[0]) * b[0] + ET(y[1]) * b[1] < 0);
 
return 0;
}

There are similar certificates for optimality and unboundedness that you can see in action in the programs QP_solver/optimality_certificate.cpp and QP_solver/unboundedness_certificate.cpp. The underlying variants of Farkas Lemma are somewhat more complicated, due to the mixed relations in  and the general bounds. The certificate section of Quadratic_program_solution<ET> gives the full picture and mathematically proves the correctness of the certificates.

Customizing the Solver

Sometimes it is necessary to alter the default behavior of the solver. This can be done by passing a suitably prepared object of the class Quadratic_program_options to the solution functions. Most options concern "soft" issues like verbosity, but there are two notable case where it is of critical importance to be able to change the defaults.

8.1 Exponent Overflow in Double Using Floating-Point Filters

The filtered version of the solver that is used for some problems by default on input type double internally constructs double-approximations of exact multiprecision values. If these exact values are extremely large, this may lead to infinite double values and incorrect results. In debug mode, the solver will notice this through a certificate cross-check in the end (or even earlier). In this case, it is advisable to explicitly switch to a non-filtered pricing strategy, see Quadratic_program_pricing_strategy.

Hint: If you have a program where the number of variables n and the number of constraints m have the same order of magnitude, the filtering will usually have no dramatic effect on the performance, so in that case you might as well switch to QP_PARTIAL_DANTZIG to be safe from the issue described here (see QP_solver/cycling.cpp for an example that shows how to change the pricing strategy).

8.2 The Solver Internally Cycles

Consider the following program. It reads a nonnegative linear program from the file cycling.mps (which is in the example directory as well), and then solves it in verbose mode, using Bland's rule, see Quadratic_program_pricing_strategy
File QP_solver/cycling.cpp

// example: solve a linear program that by default leads to cycling,
// using Bland pricing
#include <iostream>
#include <fstream>
#include <CGAL/basic.h>
#include <CGAL/QP_models.h>
#include <CGAL/QP_functions.h>
 
// choose exact floating-point type
#ifdef CGAL_USE_GMP
#include <CGAL/Gmpzf.h>
typedef CGAL::Gmpzf ET;
#else
#include <CGAL/MP_Float.h>
typedef CGAL::MP_Float ET;
#endif
 
// program and solution types
 
int main() {
std::ifstream in ( "cycling.mps");
Program lp(in); // read program from file
assert (lp.is_valid()); // we should have a valid mps file...
assert (lp.is_linear()); // ... and it should be linear...
assert (lp.is_nonnegative()); // as well as nonnegative
 
// solve the program, using ET as the exact type
// choose verbose mode and Bland pricing
options. set_verbosity(1); // verbose mode
options.set_pricing_strategy( CGAL::QP_BLAND); // Bland's rule
options.set_auto_validation( true); // automatic self-check
Solution s = CGAL::solve_nonnegative_linear_program(lp, ET(), options);
assert (s.is_valid()); // did the self-check succeed?
 
// output solution
std::cout << s;
return 0;
}

If you comment the line

options.set_pricing_strategy(CGAL::QP_BLAND); // Bland's rule

you will see that the solver cycles: the verbose mode outputs the same sequence of six iterations over and over again. By switching to QP_BLAND, the solution process typically slows down a bit (it may also speed up in some cases), but now it is guaranteed that no cycling occurs.

In general, the verbose mode can be of use when you are not sure whether the solver "has died", or whether it simply takes very long to solve your problem. We refer to the class Quadratic_program_options for further details.

Some Benchmarks for Convex Hull Containment

Here we want to show what you can expect from the solver's performance in a specific application; we don't know whether this application is typical in your case, and we make no claims whatsoever about the performance in other applications.

Still, the example shows that the performance can be dramatically affected by switching between pricing strategies, and we give some hints on how to achieve good performance in general.

The application is the one already discussed in Section Working from Iterators above: testing whether a point is in the convex hull of other points. To be able to switch between pricing strategies, we add another parameter of type Quadratic_program_options to the function solve_convex_hull_containment_lp that we pass on to the solution function:


File QP_solver/solve_convex_hull_containment_lp3.h

// example: function to check whether a point is in the convex
// hull of other points; this version uses a maker
#include <CGAL/boost/iterator/transform_iterator.hpp>
#include <CGAL/Kernel_traits.h>
#include <CGAL/QP_options.h>
#include <CGAL/QP_models.h>
#include <CGAL/QP_functions.h>
 
// unary function to get homogeneous begin-iterator of point
template <class Point_d>
struct Homogeneous_begin {
typedef typename Point_d::Homogeneous_const_iterator result_type;
result_type operator() ( const Point_d& p) const {
return p.homogeneous_begin();
}
};
 
// function to test whether point is in the convex hull of other points;
// the type ET is an exact type used for the computations
template <class Point_d, class RandomAccessIterator, class ET>
solve_convex_hull_containment_lp ( const Point_d& p,
RandomAccessIterator end, const ET& dummy,
{
// construct program and solve it
(static_cast<int>(end-begin), // n
p.dimension()+1, // m
boost::transform_iterator
<Homogeneous_begin<Point_d>, RandomAccessIterator>(begin), // A
typename Point_d::Homogeneous_const_iterator (p.homogeneous_begin()),// b
CGAL::Const_oneset_iterator<CGAL::Comparison_result>( CGAL::EQUAL), // ~
dummy, o);
}

Now let us test containment of the origin in the convex hull of n random points in [0,1]d (it will most likely not be contained, and it turns out that this is the most expensive case). In the program below, we use d=10 and n=100,000, and we comment on some other combinations of n and d below (feel free to experiment with still other values).


File QP_solver/convex_hull_containment_benchmarks.cpp

// Example: assess the solver performance under any of the available
// pricing strategies, in the convex-hull-containment problem
// NOTE: in order to see meaningful results, compile with -DNDEBUG
#include <vector>
#include <CGAL/Cartesian_d.h>
#include <CGAL/MP_Float.h>
#include <CGAL/Random.h>
#include <CGAL/Timer.h>
#include "solve_convex_hull_containment_lp3.h"
 
// choose exact floating-point type
#ifdef CGAL_USE_GMP
#include <CGAL/Gmpzf.h>
typedef CGAL::Gmpzf ET;
#else
#include <CGAL/MP_Float.h>
typedef CGAL::MP_Float ET;
#endif
 
typedef CGAL::Cartesian_d<double> Kernel_d;
typedef Kernel_d::Point_d Point_d;
 
int main()
{
const int d = 10; // change this in order to experiment
const int n = 100000; // change this in order to experiment
 
// generate n random d-dimensional points in [0,1]^d
CGAL::Random rd;
std::vector<Point_d> points;
for (int j =0; j<n; ++j) {
std::vector<double> coords;
for (int i=0; i<d; ++i)
coords.push_back(rd.get_double());
points.push_back (Point_d (d, coords.begin(), coords.end()));
}
 
// benchmark all pricing strategies in turn
CGAL::QP_CHOOSE_DEFAULT, // QP_PARTIAL_FILTERED_DANTZIG
CGAL::QP_DANTZIG, // Dantzig's pivot rule...
CGAL::QP_PARTIAL_DANTZIG, // ... with partial pricing
CGAL::QP_BLAND, // Bland's pivot rule
CGAL::QP_FILTERED_DANTZIG, // Dantzig's filtered pivot rule...
CGAL::QP_PARTIAL_FILTERED_DANTZIG // ... with partial pricing
};
 
CGAL::Timer t;
for (int i=0; i<6; ++i) {
// test strategy i
options. set_pricing_strategy (strategy[i]);
t.reset(); t.start();
// is origin in convex hull of the points? (most likely, not)
solve_convex_hull_containment_lp
(Point_d (d, CGAL::ORIGIN), points.begin(), points.end(),
ET(0), options);
t.stop();
std::cout << "Time (s) = " << t.time() << std::endl;
}
 
return 0;
}

 

 

If you compile with the macros NDEBUG or CGAL_QP_NO_ASSERTIONS set (this is essential for good performance!!), you will see runtimes that qualitatively look as follows (on your machine, the actual runtimes will roughly be some fixed multiples of the numbers in the table below, and they might vary with the random choices). The default choice of the pricing strategy in that case is QP_PARTIAL_FILTERED_DANTZIG.

Strategy Runtime in seconds
QP_CHOOSE_DEFAULT 0.32
QP_DANTZIG 10.7
QP_PARTIAL_DANTZIG 3.72
QP_BLAND 3.65
QP_FILTERED_DANTZIG 0.43
QP_PARTIAL_FILTERED_DANTZIG 0.32

We clearly see the effect of filtering: we gain a factor of ten, roughly, compared to the next best non-filtered variant.

9.1 d=3, n=1,000,000

The filtering effect is amplified if the points/dimension ratio becomes larger. This is what you might see in dimension three, with one million points.

Strategy Runtime in seconds
QP_CHOOSE_DEFAULT 1.34
QP_DANTZIG 47.6
QP_PARTIAL_DANTZIG 15.6
QP_BLAND 16.02
QP_FILTERED_DANTZIG 1.89
QP_PARTIAL_FILTERED_DANTZIG 1.34

In general, if your problem has a high variable/constraint or constraint/variable ratio, then filtering will typically pay off. In such cases, it might be beneficial to encode your problem using input type double in order to profit from the filtering (but see the issue discussed in Section Exponent Overflow in Double Using Floating-Point Filters).

9.2 d=100, n=100,000

Conversely, the filtering effect deteriorates if the points/dimension ratio becomes smaller.

Strategy Runtime in seconds
QP_CHOOSE_DEFAULT 3.05
QP_DANTZIG 78.4
QP_PARTIAL_DANTZIG 45.9
QP_BLAND 33.2
QP_FILTERED_DANTZIG 3.36
QP_PARTIAL_FILTERED_DANTZIG 3.06

9.3 d=500, n=1,000

If the points/dimension ratio tends to a constant, filtering is no longer a clear winner. The reason is that in this case, the necessary exact calculations with multiprecision numbers dominate the overall runtime.

Strategy Runtime in seconds
QP_CHOOSE_DEFAULT 2.65
QP_DANTZIG 5.55
QP_PARTIAL_DANTZIG 5.6
QP_BLAND 4.46
QP_FILTERED_DANTZIG 2.65
QP_PARTIAL_FILTERED_DANTZIG 2.61

In general, if you have a program where the number of variables and the number of constraints have the same order of magnitude, then the saving gained from using the filtered approach is typically small. In such a situation, you should consider switching to a non-filtered variant in order to avoid the rare issue discussed in Section Exponent Overflow in Double Using Floating-Point Filters altogether.

相關文章
相關標籤/搜索