#include<iostream> #include<cmath> #include<string.h> #include<string> #include<cstdio> #include<algorithm> #include<iomanip> using namespace std; #define eps 1e-8 #define PI acos(-1.0) //點和向量 struct Point{ double x,y; Point(double x=0,double y=0):x(x),y(y){} void out(){cout<<"("<<x<<','<<y<<") ";} }; typedef Point Vector; Vector operator+(Vector a,Vector b){return Vector(a.x+b.x,a.y+b.y);} Vector operator-(Vector a,Vector b){return Vector(a.x-b.x,a.y-b.y);} Vector operator*(Vector a,double p){return Vector(a.x*p,a.y*p);} Vector operator/(Vector a,double p){return Vector(a.x/p,a.y/p);} bool operator<(const Vector& a,const Vector& b){return a.x<b.x||(a.x==b.x && a.y<b.y);} int dcmp(double x){ if(fabs(x)<eps)return 0; else return x<0 ? -1:1; } bool operator==(const Point& a,const Point& b){ return dcmp(a.x-b.x)==0 && dcmp(a.y-b.y)==0; } double Dot(Vector A,Vector B){return A.x*B.x+A.y*B.y;}//向量點積 double Length(Vector A){return sqrt(Dot(A,A));}//向量模長 double Angle(Vector A,Vector B){return acos(Dot(A,B)/Length(A)/Length(B));}//向量夾角 double Cross(Vector A,Vector B){return A.x*B.y-A.y*B.x;} double Area2(Point A,Point B,Point C){return Cross(B-A,C-A);}//三角形面積的2倍 //繞起點逆時針旋轉rad度 Vector Rotate(Vector A,double rad){ return Vector(A.x*cos(rad)-A.y*sin(rad),A.x*sin(rad)+A.y*cos(rad)); } double torad(double jiao){return jiao/180*PI;}//角度轉弧度 double tojiao(double ang){return ang/PI*180;}//弧度轉角度 //單位法向量 Vector Normal(Vector A){ double L=Length(A); return Vector(-A.y/L,A.x/L); } //點和直線 struct Line{ Point P;//直線上任意一點 Vector v;//方向向量,他的左邊對應的就是半平面 double ang;//極角,即從x正半軸旋轉到向量v所需的角(弧度) Line(){} Line(Point p,Vector v):P(p),v(v){ang=atan2(v.y,v.x);} bool operator<(const Line& L)const { return ang<L.ang; } }; //計算直線P+tv和Q+tw的交點(計算前必須確保有惟一交點)即:Cross(v,w)非0 Point GetLineIntersection(Point P,Vector v,Point Q,Vector w){ Vector u=P-Q; double t=Cross(w,u)/Cross(v,w); return P+v*t; } double getx(Point p1,Point p2,Point p3,Point p4)//找到直線和線段相交的橫座標(求兩直線交點) { double k1=(p2.y-p1.y)/(p2.x-p1.x); double k2=(p4.y-p3.y)/(p4.x-p3.x); double b1=p2.y-k1*p2.x; double b2=p3.y-k2*p3.x; return (b2-b1)/(k1-k2); } //點到直線距離(dis between point P and line AB) double DistanceToLine(Point P,Point A,Point B){ Vector v1=B-A , v2=P-A; return fabs(Cross(v1,v2))/Length(v1); } //dis between point P and segment AB double DistancetoSegment(Point P,Point A,Point B){ if(A==B)return Length(P-A); Vector v1=B-A,v2=P-A,v3=P-B; if(dcmp(Dot(v1,v2))<0)return Length(v2); else if(dcmp(Dot(v1,v3))>0)return Length(v3); else return fabs(Cross(v1,v2))/Length(v1); } //point P on line AB 投影點 Point GetLineProjection(Point P,Point A,Point B){ Vector v=B-A; return A+v*(Dot(v,P-A)/Dot(v,v)); } //線段規範相交(只有一個且不在端點)每條線段兩端都在另外一條兩側,(叉積符號不一樣) bool SegmentProperIntersection(Point a1,Point a2,Point b1,Point b2){ a2=(a2-a1)*10000000000+a1;//射線A1A2相交線短B1B2 double c1=Cross(a2-a1,b1-a1),c2=Cross(a2-a1,b2-a1), c3=Cross(b2-b1,a1-b1),c4=Cross(b2-b1,a2-b1); return dcmp(c1)*dcmp(c2)<0 && dcmp(c3)*dcmp(c4)<0; } //判斷點P是否在線段AB上 bool OnSegment(Point p,Point a1,Point a2){ return dcmp(Cross(a1-p,a2-p))==0 && dcmp(Dot(a1-p,a2-p))<0; } //多邊形的面積(能夠是非凸多邊形) double PolygonArea(Point* p,int n){ double area=0; for(int i=1;i<n-1;i++) area+=Cross(p[i]-p[0],p[i+1]-p[0]); return area/2; } //點p在有向直線左邊,上面不算 bool OnLeft(Line L,Point p){ return Cross(L.v,p-L.P)>0; } double ok(double x,double y,double d,double z){ double f=fabs(d*(1/tan(acos(z/y))+1/tan(acos(z/x))))-z; if(fabs(f)<1e-4)return 0; else return f; } //計算凸包輸入點數組p,個數n,輸出點數組ch,返回凸包定點數 //輸入不能有重複,完成後輸入點順序被破壞 //若是不但願凸包的邊上有輸入點,把兩個<=改爲< //精度要求高時,建議用dcmp比較 //基於水平的Andrew算法-->一、點排序二、刪除重複的而後把前兩個放進凸包 //三、從第三個日後當新點在凸包前進左邊時繼續,不然一次刪除最近加入的點,直到新點在左邊 int ConVexHull(Point* p,int n,Point*ch){ sort(p,p+n); int m=0; for(int i=0;i<n;i++){//下凸包 while(m>1 && Cross(ch[m-1]-ch[m-2],p[i]-ch[m-2])<=0)m--; ch[m++]=p[i]; } int k=m; for(int i=n-2;i>=0;i--){//上凸包 while(m>k && Cross(ch[m-1]-ch[m-2],p[i]-ch[m-2])<=0)m--; ch[m++]=p[i]; } if(n>1)m--; return m; } //****************************************************************************** #define N 21 #define left -10e8 Point up[N],down[N]; int n; double getans()//最值必定過兩個頂點一上一下,因此枚舉全部點對 { int i,j,k; double ans=left,right;//二分法 double tx,ty; Point ql,qr; for(i=0;i<n;i++) for(j=0;j<n;j++) { if(i==j)continue; ql=up[i]; qr=down[j]; right=left;//left是左邊界,很是小的一個值,right就是枚舉的過兩點的直線最遠能達的x的大小 for(k=0;k<n;k++)//驗證枚舉直線是否知足全部點 { tx=up[k].x; ty=(tx-ql.x)*(qr.y-ql.y)/(qr.x-ql.x)+ql.y;//求出對應x點在枚舉的直線上的y值 if(ty>down[k].y&&ty<up[k].y||fabs(ty-down[k].y)<eps||fabs(ty-up[k].y)<eps)//該y值應在上下之間或與上或下重合 right=tx;//更新有邊界值 else//若是該點時不知足 { if(k)//細節!!! { if(ty<down[k].y) right=getx(ql,qr,down[k-1],down[k]); else right=getx(ql,qr,up[k-1],up[k]); } break; } } if(right>ans) ans=right; } return ans; } int main(){ cout.precision(2); for(;cin>>n&&n;){ for(int i=0;i<n;i++){ cin>>up[i].x>>up[i].y; down[i].x=up[i].x; down[i].y=up[i].y-1; } double ans=getans(); if(ans>up[n-1].x||fabs(ans-up[n-1].x)<eps) cout<<"Through all the pipe.\n"; else cout<<fixed<<ans<<'\n'; }return 0; }