目錄html
更新、更全的《機器學習》的更新網站,更有python、go、數據結構與算法、爬蟲、人工智能教學等着你:http://www.javashuo.com/article/p-vozphyqp-cm.htmlpython
import tensorflow as tf a = tf.constant(10) b = tf.constant(32) sess = tf.Session() print(sess.run(a+b))
42
# 獲取MNIST數據集 # 獲取地址:https://tensorflow.googlesource.com/tensorflow/+/master/tensorflow/examples/tutorials/mnist/input_data.py # Copyright 2015 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Functions for downloading and reading MNIST data.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import gzip import os import tensorflow.python.platform import numpy from six.moves import urllib from six.moves import xrange # pylint: disable=redefined-builtin import tensorflow as tf SOURCE_URL = 'http://yann.lecun.com/exdb/mnist/' def maybe_download(filename, work_directory): """Download the data from Yann's website, unless it's already here.""" if not os.path.exists(work_directory): os.mkdir(work_directory) filepath = os.path.join(work_directory, filename) if not os.path.exists(filepath): filepath, _ = urllib.request.urlretrieve( SOURCE_URL + filename, filepath) statinfo = os.stat(filepath) print('Successfully downloaded', filename, statinfo.st_size, 'bytes.') return filepath def _read32(bytestream): dt = numpy.dtype(numpy.uint32).newbyteorder('>') return numpy.frombuffer(bytestream.read(4), dtype=dt)[0] def extract_images(filename): """Extract the images into a 4D uint8 numpy array [index, y, x, depth].""" print('Extracting', filename) with gzip.open(filename) as bytestream: magic = _read32(bytestream) if magic != 2051: raise ValueError( 'Invalid magic number %d in MNIST image file: %s' % (magic, filename)) num_images = _read32(bytestream) rows = _read32(bytestream) cols = _read32(bytestream) buf = bytestream.read(rows * cols * num_images) data = numpy.frombuffer(buf, dtype=numpy.uint8) data = data.reshape(num_images, rows, cols, 1) return data def dense_to_one_hot(labels_dense, num_classes=10): """Convert class labels from scalars to one-hot vectors.""" num_labels = labels_dense.shape[0] index_offset = numpy.arange(num_labels) * num_classes labels_one_hot = numpy.zeros((num_labels, num_classes)) labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1 return labels_one_hot def extract_labels(filename, one_hot=False): """Extract the labels into a 1D uint8 numpy array [index].""" print('Extracting', filename) with gzip.open(filename) as bytestream: magic = _read32(bytestream) if magic != 2049: raise ValueError( 'Invalid magic number %d in MNIST label file: %s' % (magic, filename)) num_items = _read32(bytestream) buf = bytestream.read(num_items) labels = numpy.frombuffer(buf, dtype=numpy.uint8) if one_hot: return dense_to_one_hot(labels) return labels class DataSet(object): def __init__(self, images, labels, fake_data=False, one_hot=False, dtype=tf.float32): """Construct a DataSet. one_hot arg is used only if fake_data is true. `dtype` can be either `uint8` to leave the input as `[0, 255]`, or `float32` to rescale into `[0, 1]`. """ dtype = tf.as_dtype(dtype).base_dtype if dtype not in (tf.uint8, tf.float32): raise TypeError('Invalid image dtype %r, expected uint8 or float32' % dtype) if fake_data: self._num_examples = 10000 self.one_hot = one_hot else: assert images.shape[0] == labels.shape[0], ( 'images.shape: %s labels.shape: %s' % (images.shape, labels.shape)) self._num_examples = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) assert images.shape[3] == 1 images = images.reshape(images.shape[0], images.shape[1] * images.shape[2]) if dtype == tf.float32: # Convert from [0, 255] -> [0.0, 1.0]. images = images.astype(numpy.float32) images = numpy.multiply(images, 1.0 / 255.0) self._images = images self._labels = labels self._epochs_completed = 0 self._index_in_epoch = 0 @property def images(self): return self._images @property def labels(self): return self._labels @property def num_examples(self): return self._num_examples @property def epochs_completed(self): return self._epochs_completed def next_batch(self, batch_size, fake_data=False): """Return the next `batch_size` examples from this data set.""" if fake_data: fake_image = [1] * 784 if self.one_hot: fake_label = [1] + [0] * 9 else: fake_label = 0 return [fake_image for _ in xrange(batch_size)], [ fake_label for _ in xrange(batch_size)] start = self._index_in_epoch self._index_in_epoch += batch_size if self._index_in_epoch > self._num_examples: # Finished epoch self._epochs_completed += 1 # Shuffle the data perm = numpy.arange(self._num_examples) numpy.random.shuffle(perm) self._images = self._images[perm] self._labels = self._labels[perm] # Start next epoch start = 0 self._index_in_epoch = batch_size assert batch_size <= self._num_examples end = self._index_in_epoch return self._images[start:end], self._labels[start:end] def read_data_sets(train_dir, fake_data=False, one_hot=False, dtype=tf.float32): class DataSets(object): pass data_sets = DataSets() if fake_data: def fake(): return DataSet([], [], fake_data=True, one_hot=one_hot, dtype=dtype) data_sets.train = fake() data_sets.validation = fake() data_sets.test = fake() return data_sets TRAIN_IMAGES = 'train-images-idx3-ubyte.gz' TRAIN_LABELS = 'train-labels-idx1-ubyte.gz' TEST_IMAGES = 't10k-images-idx3-ubyte.gz' TEST_LABELS = 't10k-labels-idx1-ubyte.gz' VALIDATION_SIZE = 5000 local_file = maybe_download(TRAIN_IMAGES, train_dir) train_images = extract_images(local_file) local_file = maybe_download(TRAIN_LABELS, train_dir) train_labels = extract_labels(local_file, one_hot=one_hot) local_file = maybe_download(TEST_IMAGES, train_dir) test_images = extract_images(local_file) local_file = maybe_download(TEST_LABELS, train_dir) test_labels = extract_labels(local_file, one_hot=one_hot) validation_images = train_images[:VALIDATION_SIZE] validation_labels = train_labels[:VALIDATION_SIZE] train_images = train_images[VALIDATION_SIZE:] train_labels = train_labels[VALIDATION_SIZE:] data_sets.train = DataSet(train_images, train_labels, dtype=dtype) data_sets.validation = DataSet(validation_images, validation_labels, dtype=dtype) data_sets.test = DataSet(test_images, test_labels, dtype=dtype) return data_sets
# 使用Tensorflow 訓練——Softmax迴歸 import time import tensorflow as tf # 讀取 MNIST 數據集,分紅訓練數據和測試數據 mnist = read_data_sets('MNIST_data/', one_hot=True) # 設置訓練數據 x,鏈接權重 W 和偏置 b x = tf.placeholder('float', [None, 784]) W = tf.Variable(tf.zeros([784, 10])) b = tf.Variable(tf.zeros([10])) # 對 x 和 W 進行內積運算後把結果傳遞給 softmax 函數,計算輸出 y y = tf.nn.softmax(tf.matmul(x, W)+b) # 設置指望輸出 y_ y_ = tf.placeholder('float', [None, 10]) # 計算交叉熵代價函數 cross_entropy = -tf.reduce_sum(y_*tf.log(y)) # 使用梯度降低法最小化交叉熵代價函數 train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy) # 初始化全部參數 init = tf.global_variables_initializer() sess = tf.Session() sess.run(init) st = time.time() # 迭代訓練 for i in range(1000): # 選擇訓練數據(mini-batch) batch_xs, batch_ys = mnist.train.next_batch(100) # 訓練處理 sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys}) # 進行測試,確認實際輸出和指望輸出是否一致 correct_prediction = tf.equal(tf.argmax(y, -1), tf.argmax(y_, 1)) softmax_time = time.time()-st # 計算準確率 accuary = tf.reduce_mean(tf.cast(correct_prediction, 'float')) print('準確率:%s' % sess.run(accuary, feed_dict={ x: mnist.test.images, y_: mnist.test.labels})) softmax_acc = sess.run(accuary, feed_dict={ x: mnist.test.images, y_: mnist.test.labels})
Extracting MINIST_data/train-images-idx3-ubyte.gz Extracting MINIST_data/train-labels-idx1-ubyte.gz Extracting MINIST_data/t10k-images-idx3-ubyte.gz Extracting MINIST_data/t10k-labels-idx1-ubyte.gz 準確率:0.9191
# 構建網絡組件 import time import tensorflow as tf def weight_variable(shape): """ 初始化鏈接權重 """ # truncated_normal()根據指定的標準差建立隨機數 initial = tf.truncated_normal(shape, stddev=0.1) return tf.Variable(initial) def bias_variable(shape): """ 初始化偏置 """ initial = tf.constant(0.1, shape=shape) return tf.Variable(initial) def conv2d(x, W): """ 構建卷積層 x: 輸入數據,四維參數——批大小、高度、寬度和通道數 W: 卷積核參數,四維參數——卷積核高度、卷積核寬度、輸入通道數和輸出通道數 """ # strides設置卷積核移動的步長,strides=[1,2,2,1]步長爲2 # padding設置是否補零填充,padding='SAME'爲填充;padding='VALID'爲不填充 return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME') def max_pool_2x2(x): """ 構建池化層 x: 輸入數據,四維參數——批大小、高度、寬度和通道數 """ # ksize設置池化窗口的大小,四維參數——批大小、高度、寬度和通道數 return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') # 讀取MNIST數據集 mnist = read_data_sets('MNIST_data', one_hot=True) # 輸入數據,二維數據shape=[批大小, 數據維度] x = tf.placeholder('float', shape=[None, 784]) # 指望輸出 y_ = tf.placeholder('float', shape=[None, 10]) # 修改數據集格式(批大小*28*28*通道數),即把二維數據修改爲四維張量[-1,28,28,1] x_image = tf.reshape(x, [-1, 28, 28, 1])
# 定義網絡結構 # 第1個卷積層,weight_variable([卷積核高度,卷積核寬度,通道數,卷積核個數]) W_conv1 = weight_variable([5, 5, 1, 32]) b_conv1 = bias_variable([32]) # 激活函數及池化 h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1)+b_conv1) h_pool = max_pool_2x2(h_conv1) # 第2個卷積層 W_conv2 = weight_variable([5, 5, 32, 64]) b_conv2 = bias_variable([64]) # 激活函數及池化 h_conv2 = tf.nn.relu(conv2d(h_pool, W_conv2)+b_conv2) h_pool2 = max_pool_2x2(h_conv2) # 設置全鏈接層的參數 W_fc1 = weight_variable([7*7*64, 1024]) b_fc1 = bias_variable([1024]) # 全鏈接層 h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64]) h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1)+b_fc1) # Dropout keep_prob = tf.placeholder('float') h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob) # 設置全鏈接層的參數 W_fc2 = weight_variable([1024, 10]) b_fc2 = bias_variable([10]) # softmax 函數 y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2)+b_fc2) # 偏差函數,交叉熵代價函數 cross_entropy = -tf.reduce_sum(y_*tf.log(y_conv))
# 訓練模型 # 訓練方法 train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy) # 測試方法 correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, 'float')) # 建立訓練用的會話 sess = tf.Session() # 初始化參數 sess.run(tf.global_variables_initializer()) st = time.time() # 迭代處理 for i in range(1000): # 選擇訓練數據(mini-batch) batch = mnist.train.next_batch(50) # 訓練處理 _, loss_value = sess.run([train_step, cross_entropy], feed_dict={ x: batch[0], y_: batch[1], keep_prob: 0.5}) # 測試 if i % 100 == 0: acc = sess.run(accuracy, feed_dict={ x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.}) print(f'卷積神經網絡迭代 {i} 次的準確率:{acc}') print(f'Softmax迴歸訓練時間:{softmax_time}') print(f'卷積神經網絡訓練時間:{time.time()-st}') # 測試 acc = sess.run(accuracy, feed_dict={ x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.}) print(f'Softmax迴歸準確率:{softmax_acc}') print(f'卷積神經網絡準確率:{acc}')
卷積神經網絡迭代 0 次的準確率:0.08910000324249268 卷積神經網絡迭代 100 次的準確率:0.8474000096321106 卷積神經網絡迭代 200 次的準確率:0.9085000157356262 卷積神經網絡迭代 300 次的準確率:0.9266999959945679 卷積神經網絡迭代 400 次的準確率:0.9399999976158142 卷積神經網絡迭代 500 次的準確率:0.9430999755859375 卷積神經網絡迭代 600 次的準確率:0.953499972820282 卷積神經網絡迭代 700 次的準確率:0.9571999907493591 卷積神經網絡迭代 800 次的準確率:0.9599999785423279 卷積神經網絡迭代 900 次的準確率:0.9613000154495239 Softmax迴歸訓練時間:2.030284881591797 卷積神經網絡訓練時間:394.48987913131714 Softmax迴歸準確率:0.9190999865531921 卷積神經網絡準確率:0.9670000076293945
# 使用Tensorflow進行可視化 # Copyright 2015 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Functions for downloading and reading MNIST data.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import gzip import os import time import tensorflow.python.platform import numpy from six.moves import urllib from six.moves import xrange # pylint: disable=redefined-builtin import tensorflow as tf SOURCE_URL = 'http://yann.lecun.com/exdb/mnist/' def maybe_download(filename, work_directory): """Download the data from Yann's website, unless it's already here.""" if not os.path.exists(work_directory): os.mkdir(work_directory) filepath = os.path.join(work_directory, filename) if not os.path.exists(filepath): filepath, _ = urllib.request.urlretrieve( SOURCE_URL + filename, filepath) statinfo = os.stat(filepath) print('Successfully downloaded', filename, statinfo.st_size, 'bytes.') return filepath def _read32(bytestream): dt = numpy.dtype(numpy.uint32).newbyteorder('>') return numpy.frombuffer(bytestream.read(4), dtype=dt)[0] def extract_images(filename): """Extract the images into a 4D uint8 numpy array [index, y, x, depth].""" print('Extracting', filename) with gzip.open(filename) as bytestream: magic = _read32(bytestream) if magic != 2051: raise ValueError( 'Invalid magic number %d in MNIST image file: %s' % (magic, filename)) num_images = _read32(bytestream) rows = _read32(bytestream) cols = _read32(bytestream) buf = bytestream.read(rows * cols * num_images) data = numpy.frombuffer(buf, dtype=numpy.uint8) data = data.reshape(num_images, rows, cols, 1) return data def dense_to_one_hot(labels_dense, num_classes=10): """Convert class labels from scalars to one-hot vectors.""" num_labels = labels_dense.shape[0] index_offset = numpy.arange(num_labels) * num_classes labels_one_hot = numpy.zeros((num_labels, num_classes)) labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1 return labels_one_hot def extract_labels(filename, one_hot=False): """Extract the labels into a 1D uint8 numpy array [index].""" print('Extracting', filename) with gzip.open(filename) as bytestream: magic = _read32(bytestream) if magic != 2049: raise ValueError( 'Invalid magic number %d in MNIST label file: %s' % (magic, filename)) num_items = _read32(bytestream) buf = bytestream.read(num_items) labels = numpy.frombuffer(buf, dtype=numpy.uint8) if one_hot: return dense_to_one_hot(labels) return labels class DataSet(object): def __init__(self, images, labels, fake_data=False, one_hot=False, dtype=tf.float32): """Construct a DataSet. one_hot arg is used only if fake_data is true. `dtype` can be either `uint8` to leave the input as `[0, 255]`, or `float32` to rescale into `[0, 1]`. """ dtype = tf.as_dtype(dtype).base_dtype if dtype not in (tf.uint8, tf.float32): raise TypeError('Invalid image dtype %r, expected uint8 or float32' % dtype) if fake_data: self._num_examples = 10000 self.one_hot = one_hot else: assert images.shape[0] == labels.shape[0], ( 'images.shape: %s labels.shape: %s' % (images.shape, labels.shape)) self._num_examples = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) assert images.shape[3] == 1 images = images.reshape(images.shape[0], images.shape[1] * images.shape[2]) if dtype == tf.float32: # Convert from [0, 255] -> [0.0, 1.0]. images = images.astype(numpy.float32) images = numpy.multiply(images, 1.0 / 255.0) self._images = images self._labels = labels self._epochs_completed = 0 self._index_in_epoch = 0 @property def images(self): return self._images @property def labels(self): return self._labels @property def num_examples(self): return self._num_examples @property def epochs_completed(self): return self._epochs_completed def next_batch(self, batch_size, fake_data=False): """Return the next `batch_size` examples from this data set.""" if fake_data: fake_image = [1] * 784 if self.one_hot: fake_label = [1] + [0] * 9 else: fake_label = 0 return [fake_image for _ in xrange(batch_size)], [ fake_label for _ in xrange(batch_size)] start = self._index_in_epoch self._index_in_epoch += batch_size if self._index_in_epoch > self._num_examples: # Finished epoch self._epochs_completed += 1 # Shuffle the data perm = numpy.arange(self._num_examples) numpy.random.shuffle(perm) self._images = self._images[perm] self._labels = self._labels[perm] # Start next epoch start = 0 self._index_in_epoch = batch_size assert batch_size <= self._num_examples end = self._index_in_epoch return self._images[start:end], self._labels[start:end] def read_data_sets(train_dir, fake_data=False, one_hot=False, dtype=tf.float32): class DataSets(object): pass data_sets = DataSets() if fake_data: def fake(): return DataSet([], [], fake_data=True, one_hot=one_hot, dtype=dtype) data_sets.train = fake() data_sets.validation = fake() data_sets.test = fake() return data_sets TRAIN_IMAGES = 'train-images-idx3-ubyte.gz' TRAIN_LABELS = 'train-labels-idx1-ubyte.gz' TEST_IMAGES = 't10k-images-idx3-ubyte.gz' TEST_LABELS = 't10k-labels-idx1-ubyte.gz' VALIDATION_SIZE = 5000 local_file = maybe_download(TRAIN_IMAGES, train_dir) train_images = extract_images(local_file) local_file = maybe_download(TRAIN_LABELS, train_dir) train_labels = extract_labels(local_file, one_hot=one_hot) local_file = maybe_download(TEST_IMAGES, train_dir) test_images = extract_images(local_file) local_file = maybe_download(TEST_LABELS, train_dir) test_labels = extract_labels(local_file, one_hot=one_hot) validation_images = train_images[:VALIDATION_SIZE] validation_labels = train_labels[:VALIDATION_SIZE] train_images = train_images[VALIDATION_SIZE:] train_labels = train_labels[VALIDATION_SIZE:] data_sets.train = DataSet(train_images, train_labels, dtype=dtype) data_sets.validation = DataSet(validation_images, validation_labels, dtype=dtype) data_sets.test = DataSet(test_images, test_labels, dtype=dtype) return data_sets def weight_variable(shape): """ 初始化鏈接權重 """ # truncated_normal()根據指定的標準差建立隨機數 initial = tf.truncated_normal(shape, stddev=0.1) return tf.Variable(initial) def bias_variable(shape): """ 初始化偏置 """ initial = tf.constant(0.1, shape=shape) return tf.Variable(initial) def conv2d(x, W): """ 構建卷積層 x: 輸入數據,四維參數——批大小、高度、寬度和通道數 W: 卷積核參數,四維參數——卷積核高度、卷積核寬度、輸入通道數和輸出通道數 """ # strides設置卷積核移動的步長,strides=[1,2,2,1]步長爲2 # padding設置是否補零填充,padding='SAME'爲填充;padding='VALID'爲不填充 return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME') def max_pool_2x2(x): """ 構建池化層 x: 輸入數據,四維參數——批大小、高度、寬度和通道數 """ # ksize設置池化窗口的大小,四維參數——批大小、高度、寬度和通道數 return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') # 讀取MNIST數據集 mnist = read_data_sets('MNIST_data', one_hot=True) # # 輸入數據,二維數據shape=[批大小, 數據維度] # x = tf.placeholder('float', shape=[None, 784]) # # 指望輸出 # y_ = tf.placeholder('float', shape=[None, 10]) # 經過as_default()生成一個計算圖 with tf.Graph().as_default(): # 設置數據集和指望輸出 x = tf.placeholder('float', shape=[None, 784], name='Input') y_ = tf.placeholder('float', shape=[None, 10], name='GroundTruth') # 修改數據集格式(批大小*28*28*通道數),即把二維數據修改爲四維張量[-1,28,28,1] x_image = tf.reshape(x, [-1, 28, 28, 1]) # 第1個卷積層,weight_variable([卷積核高度,卷積核寬度,通道數,卷積核個數]) W_conv1 = weight_variable([5, 5, 1, 32]) b_conv1 = bias_variable([32]) # 激活函數及池化 h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1)+b_conv1) h_pool = max_pool_2x2(h_conv1) # 第2個卷積層 W_conv2 = weight_variable([5, 5, 32, 64]) b_conv2 = bias_variable([64]) # 激活函數及池化 h_conv2 = tf.nn.relu(conv2d(h_pool, W_conv2)+b_conv2) h_pool2 = max_pool_2x2(h_conv2) # 設置全鏈接層的參數 W_fc1 = weight_variable([7*7*64, 1024]) b_fc1 = bias_variable([1024]) # 全鏈接層 h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64]) h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1)+b_fc1) # Dropout keep_prob = tf.placeholder('float') h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob) # 設置全鏈接層的參數 W_fc2 = weight_variable([1024, 10]) b_fc2 = bias_variable([10]) # softmax 函數 # y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2)+b_fc2) with tf.name_scope('Output') as scope: y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2)+b_fc2) # 偏差函數,交叉熵代價函數 # cross_entropy = -tf.reduce_sum(y_*tf.log(y_conv)) with tf.name_scope('xentropy') as scope: cross_entropy = -tf.reduce_sum(y_*tf.log(y_conv)) # tf.summary.scalar()輸出訓練狀況 ce_summ = tf.summary.scalar('cross_entropy', cross_entropy) # 訓練方法 # train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy) with tf.name_scope('train') as scope: train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy) # 測試方法 # correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1)) # accuracy = tf.reduce_mean(tf.cast(correct_prediction, 'float')) with tf.name_scope('test') as scope: correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, 'float')) accuracy_summary = tf.summary.scalar('accuracy', accuracy) # 建立訓練用的會話 sess = tf.Session() # 初始化參數 sess.run(tf.global_variables_initializer()) # 訓練狀況的輸出設置(新增) # 把設置的全部輸出操做合併爲一個操做 summary_op = tf.summary.merge_all() # tf.summary.FileWriter()保存訓練數據,graph_def爲圖(網絡結構) summary_writer = tf.summary.FileWriter('MNIST_data', graph_def=sess.graph_def) st = time.time() # 迭代處理 for i in range(1000): # 選擇訓練數據(mini-batch) batch = mnist.train.next_batch(50) # 訓練處理 _, loss_value = sess.run([train_step, cross_entropy], feed_dict={ x: batch[0], y_: batch[1], keep_prob: 0.5}) # 測試 if i % 100 == 0: # acc = sess.run(accuracy, feed_dict={ # x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.}) # summary_op輸出訓練數據,accuracy進行測試 result = sess.run([summary_op, accuracy], feed_dict={ x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.}) # 傳遞summary_op summary_str = result[0] # 傳遞acc acc = result[1] # add_summary()輸出summary_str的內容 summary_writer.add_summary(summary_str, i) print(f'卷積神經網絡迭代 {i} 次的準確率:{acc}') print(f'卷積神經網絡訓練時間:{time.time()-st}') # 測試 acc = sess.run(accuracy, feed_dict={ x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.}) print(f'卷積神經網絡準確率:{acc}')
Extracting MNIST_data/train-images-idx3-ubyte.gz Extracting MNIST_data/train-labels-idx1-ubyte.gz Extracting MNIST_data/t10k-images-idx3-ubyte.gz Extracting MNIST_data/t10k-labels-idx1-ubyte.gz WARNING:tensorflow:Passing a `GraphDef` to the SummaryWriter is deprecated. Pass a `Graph` object instead, such as `sess.graph`. 卷積神經網絡迭代 0 次的準確率:0.11810000240802765 卷積神經網絡迭代 100 次的準確率:0.8456000089645386 卷積神經網絡迭代 200 次的準確率:0.9088000059127808 卷積神經網絡迭代 300 次的準確率:0.9273999929428101 卷積神經網絡迭代 400 次的準確率:0.935699999332428 卷積神經網絡迭代 500 次的準確率:0.9404000043869019 卷積神經網絡迭代 600 次的準確率:0.9490000009536743 卷積神經網絡迭代 700 次的準確率:0.951200008392334 卷積神經網絡迭代 800 次的準確率:0.95660001039505 卷積神經網絡迭代 900 次的準確率:0.9592999815940857 卷積神經網絡訓練時間:374.29131293296814 卷積神經網絡準確率:0.963699996471405
終端運行:tensorboard --logdir ~/Desktop/jupyter/deepLearning/圖解深度學習-tensorflow/MNIST_data Starting Tensor- Board on port 6006web