[Swift]LeetCode1140. 石子游戲 II | Stone Game II

★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★
➤微信公衆號:山青詠芝(shanqingyongzhi)
➤博客園地址:山青詠芝(https://www.cnblogs.com/strengthen/
➤GitHub地址:https://github.com/strengthen/LeetCode
➤原文地址:http://www.javashuo.com/article/p-biwtyvnz-ks.html 
➤若是連接不是山青詠芝的博客園地址,則多是爬取做者的文章。
➤原文已修改更新!強烈建議點擊原文地址閱讀!支持做者!支持原創!
★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★html

Alex and Lee continue their games with piles of stones.  There are a number of piles arranged in a row, and each pile has a positive integer number of stones piles[i].  The objective of the game is to end with the most stones. git

Alex and Lee take turns, with Alex starting first.  Initially, M = 1.github

On each player's turn, that player can take all the stones in the first X remaining piles, where 1 <= X <= 2M.  Then, we set M = max(M, X).微信

The game continues until all the stones have been taken.ide

Assuming Alex and Lee play optimally, return the maximum number of stones Alex can get.this

Example 1:spa

Input: piles = [2,7,9,4,4]
Output: 10
Explanation:  If Alex takes one pile at the beginning, Lee takes two piles, then Alex takes 2 piles again. Alex can get 2 + 4 + 4 = 10 piles in total. If Alex takes two piles at the beginning, then Lee can take all three piles left. In this case, Alex get 2 + 7 = 9 piles in total. So we return 10 since it's larger. 

Constraints:rest

  • 1 <= piles.length <= 100
  • 1 <= piles[i] <= 10 ^ 4

亞歷克斯和李繼續他們的石子游戲。許多堆石子 排成一行,每堆都有正整數顆石子 piles[i]。遊戲以誰手中的石子最多來決出勝負。code

亞歷克斯和李輪流進行,亞歷克斯先開始。最初,M = 1htm

在每一個玩家的回合中,該玩家能夠拿走剩下的 前 X 堆的全部石子,其中 1 <= X <= 2M。而後,令 M = max(M, X)

遊戲一直持續到全部石子都被拿走。

假設亞歷克斯和李都發揮出最佳水平,返回亞歷克斯能夠獲得的最大數量的石頭。

示例:

輸入:piles = [2,7,9,4,4]
輸出:10
解釋:
若是亞歷克斯在開始時拿走一堆石子,李拿走兩堆,接着亞歷克斯也拿走兩堆。在這種狀況下,亞歷克斯能夠拿到 2 + 4 + 4 = 10 顆石子。 
若是亞歷克斯在開始時拿走兩堆石子,那麼李就能夠拿走剩下所有三堆石子。在這種狀況下,亞歷克斯能夠拿到 2 + 7 = 9 顆石子。
因此咱們返回更大的 10。 

提示:

  • 1 <= piles.length <= 100
  • 1 <= piles[i] <= 10 ^ 4

8ms
 1 class Solution {
 2     private var sums = [Int](repeating: 0, count: 101)
 3     private var hash = [[Int]](repeating: [Int](repeating: 0, count: 101), count: 101)
 4     func stoneGameII(_ piles: [Int]) -> Int {
 5         let N = piles.count
 6         if N == 0 { return 0 }
 7         sums[N-1] = piles[N-1]
 8         for i in stride(from: N-2, to: -1, by: -1) {
 9             sums[i] = sums[i+1] + piles[i]
10         }
11        
12         return helper(piles, 0, 1)
13     }
14 
15 
16     private func helper(_ a: [Int], _ i: Int, _ M: Int) -> Int {
17         if i == a.count { return 0 }
18         if 2*M >= a.count - i { return sums[i] }
19         if hash[i][M] != 0 { return hash[i][M] }
20 
21         var minv = Int.max //the min value the next player can get
22         for x in 1..<2*M+1 {
23             minv = min(minv, helper(a, i+x, max(M,x)))
24         }
25         hash[i][M] = sums[i] - minv  //max stones = all the left stones - the min stones next player can get
26         return hash[i][M]
27     }
28 }

Runtime: 16 ms

Memory Usage: 21 MB
 1 class Solution {
 2     func stoneGameII(_ piles: [Int]) -> Int {
 3         var n:Int = piles.count
 4         var sums:[Int] = [Int](repeating:0,count:n + 1)
 5         for i in stride(from:n - 1,through:0,by:-1)
 6         {
 7             sums[i] = piles[i] + sums[i+1]
 8         }
 9         var dp:[[Int]] = [[Int]](repeating:[Int](repeating:0,count:n + 1),count:n)
10         for i in stride(from:n - 1,through:0,by:-1)
11         {
12             for j in 1...n
13             {
14                 if 2 * j >= n - i
15                 {
16                     dp[i][j]=sums[i]
17                 }
18                 else
19                 {
20                     for k in 1...(2*j)
21                     {
22                         let nextM:Int = max(k,j)
23                         dp[i][j] = max(dp[i][j],sums[i] - dp[i+k][nextM])
24                     }
25                 }
26             }
27         }
28         return dp[0][1]
29     }
30 }

20ms 
 1 class Solution {
 2     func stoneGameII(_ piles: [Int]) -> Int {
 3         guard !piles.isEmpty else { return 0 }
 4         
 5         var hash = [Key:Int]()
 6         var sums = Array(repeating: 0, count: piles.count)
 7         sums[0] = piles[0]
 8         for i in 1..<piles.count {
 9             sums[i] = sums[i-1] + piles[i]
10         }
11         return _stoneGameII(sums, 0, 1, &hash)
12     }
13     
14     func _stoneGameII(_ sums: [Int], _ i: Int, _ m: Int, _ hash: inout [Key:Int]) -> Int {
15         if i >= sums.count { return 0 }
16         
17         let key = Key(i,m)
18         if let result = hash[key] { return result }
19         
20         var result = Int.max
21         for x in (i..<min(sums.count, (i + m * 2))) {
22             result = min(result, _stoneGameII(sums, x+1, max(m, x - i + 1), &hash))
23         }
24         
25         result = sums[sums.count - 1] - (i == 0 ? 0 : sums[i - 1]) - result
26         
27         hash[key] = result
28         return result
29     }
30 }
31 
32 struct Key: Hashable {
33     let i: Int
34     let m: Int
35     
36     init(_ i: Int, _ m: Int) {
37         self.i = i
38         self.m = m
39     }
40 }

40ms

 1 class Solution {
 2     var m = [[Int]]()
 3     func stoneGameII(_ piles: [Int]) -> Int {
 4         var sum = piles.reduce(0){$0 + $1}
 5         m = [[Int]](repeating:[Int](repeating: Int.min, count: 2 * piles.count), count: piles.count)
 6         let diff = dfsHelper(piles, 0, 1)
 7         return (sum - diff) / 2 + diff
 8     }
 9     
10     fileprivate func dfsHelper(_ piles:[Int], _ idx:Int, _ M:Int) -> Int {
11         
12         
13         if idx >= piles.count {
14             return 0
15         }
16         if m[idx][M] > 0 { return m[idx][M] } 
17     
18         var sum = 0
19         for i in idx...min(idx + 2 * M - 1, piles.count - 1) {
20             sum += piles[i]
21             m[idx][M] = max(m[idx][M], sum - dfsHelper(piles, i+1, max(M, (i - idx)+1)))
22         }
23         return m[idx][M]
24     }
25 }

192ms

 1 class Solution {
 2     func stoneGameII(_ piles: [Int]) -> Int {
 3         guard !piles.isEmpty else { return 0 }
 4         
 5         var hash = [Key:Int]()
 6         return _stoneGameII(piles, 0, 1, true, &hash)
 7     }
 8     
 9     func _stoneGameII(_ piles: [Int], _ i: Int, _ m: Int, _ player: Bool, _ hash: inout [Key:Int]) -> Int {
10         if i >= piles.count { return 0 }
11         
12         let key = Key(i,m,player)
13         if let result = hash[key] { return result }
14         
15         var result = player ? Int.min : Int.max
16         for x in (i..<min(piles.count, (i + m * 2))) {
17             
18             if player { // I am the player, maximize the results
19                 let sum = piles[i...x].reduce(0,+)
20                 result = max(result, sum + _stoneGameII(piles, x+1, max(m, x - i + 1), !player, &hash))    
21             } 
22             else { // I am the opponent, minimize the results
23                 // Note we don't do "sum + _stoneGame" because we are 
24                 // only interested in player's result (number of stones)
25                 result = min(result, _stoneGameII(piles, x+1, max(m, x - i + 1), !player, &hash))    
26             }
27             
28         }
29         
30         hash[key] = result
31         return result
32     }
33 }
34 
35 struct Key: Hashable {
36     let i: Int
37     let m: Int
38     let player: Bool
39     
40     init(_ i: Int, _ m: Int, _ player: Bool) {
41         self.i = i
42         self.m = m
43         self.player = player
44     }
45 }
相關文章
相關標籤/搜索