機器學習缺失值處理方法彙總

原文地址:機器學習缺失值處理方法彙總 缺失值處理方法綜述 缺失值是指粗糙數據中由於缺少信息而造成的數據的聚類、分組、刪失或截斷。它指的是現有數據集中某個或某些屬性的值是不完全的。缺失值的產生的原因多種多樣,主要分爲機械原因和人爲原因。 機械原因是由於機械原因導致的數據收集或保存的失敗造成的數據缺失,比如數據存儲的失敗,存儲器損壞,機械故障導致某段時間數據未能收集(對於定時數據採集而言)。 人爲原因
相關文章
相關標籤/搜索