【BZOJ】4002: [JLOI2015]有意義的字符串

題意

求$\left \lfloor \left( \frac{b+\sqrt{d}}{2} \right)^n \right \rfloor \pmod {7528443412579576937} \(,\)\left( 0 \le n \le 10^{18}, 0 < b^2 \le d < (b+1)^2 \le 10^{18}, b \mbox{ mod } 2 = 1, d \mbox{ mod } 4=1 \right) $c++

分析

發現這個並很差算,而若是是\(\left( \frac{b-\sqrt{d}}{2} \right)^n\)那麼就好算了。因而又想到數列的特徵方程獲得的解\(a_n = c_1 x_1^n + c_2 x_2^n\),因而咱們搞搞。直接將\(c_1 = c_2 = 1\),則變成\(a_n = x_1^n + x_2^n\),而咱們知道\(x_一、x_2\)是特徵方程的兩個解,和上面那個形式極爲類似,因而咱們繼續假設。即\(x_1 = \left( \frac{b+\sqrt{d}}{2} \right), x_2 = \left( \frac{b-\sqrt{d}}{2} \right)\)。則\(a_{n+2} = pa_{n+1} + qa_{n}\)中,\(p = x_1 + x_2, q = - x_1 x_2\),所以獲得\(a_{n+2} = ba_{n+1} - \frac{b^2-d}{4}a_{n}\)spa

題解

根據上面這個遞推式,咱們容易算出其中兩項,容易獲得\(a_1 = b, a_2 = \frac{b^2+d}{2}\)。而發現通項求出來的是整數,所以咱們用矩陣乘法求出\(a_n\)便可。最後再根據條件特判一下\(\left( \frac{b-\sqrt{d}}{2} \right)^n\)便可,即\(ans = a_n - [b^2 \neq d \land n是偶數]\)
注意n=0要特判...code

#include <bits/stdc++.h>
using namespace std;
typedef unsigned long long ll;
typedef ll mtx[2][2];
const ll mo=7528443412579576937ull, Lim=1e9;
inline void CK(ll &c) {
    if(c>=mo)
        c-=mo;
}
inline ll mul(ll a, ll b) {
    if(a<=Lim && b<=Lim) {
        return a*b;
    }
    if(a<b) {
        swap(a, b);
    }
    ll c=0;
    for(; b; b>>=1, CK(a<<=1)) {
        if(b&1) {
            CK(c+=a);
        }
    }
    return c;
}
void mul(mtx a, mtx b, mtx c, int la, int lb, int lc) {
    static mtx t;
    memset(t, 0, sizeof t);
    for(int i=0; i<la; ++i) {
        for(int j=0; j<lc; ++j) {
            for(int k=0; k<lb; ++k) {
                CK(t[i][j]+=mul(a[i][k], b[k][j]));
            }
        }
    }
    memcpy(c, t, sizeof t);
}
ll b, d, n;
bool spj(ll n) {
    if(n==1) {
        printf("%lld\n", (ll)((((double)b+sqrt(d))/2.0)));
    }
    else if(n==2) {
        printf("%lld\n", (b*b+d)/2);
    }
    return n<=2;
}
mtx a, c;
int main() {
    scanf("%lld%lld%lld", &b, &d, &n);
    if(spj(n)) {
        return 0;
    }
    ll t1=b, t2=(d-b*b)/4;
    CK(t1), CK(t2);
    a[0][0]=t1, a[0][1]=1;
    a[1][0]=t2, a[1][1]=0;
    c[0][0]=c[1][1]=1;
    for(ll tt=n-2; tt; tt>>=1, mul(a, a, a, 2, 2, 2)) {
        if(tt&1) {
            mul(c, a, c, 2, 2, 2);
        }
    }
    ll a2=(b*b+d)/2, a1=b;
    CK(a1), CK(a2);
    ll ans;
    CK(ans=mul(a2, c[0][0])+mul(a1, c[1][0]));
    if(b*b!=d && (n&1)==0) {
        if(ans==0) {
            ans=mo-1;
        }
        else {
            ans--;
        }
    }
    printf("%llu\n", ans);
    return 0;
}
相關文章
相關標籤/搜索