爬蟲模擬登陸破解無原圖滑動驗證碼

模擬登陸對象:博客園python

驗證碼類型:無原圖滑動驗證碼web

使用工具與模塊:python,selenium canvas

瀏覽器:Chrome瀏覽器

大致思路:之前的滑動驗證碼多爲有原圖的驗證碼,能夠經過Image模塊截取兩張不一樣的圖,經過對比像素得出移動的距離,無原圖驗證碼也是基於這個原理,只是多了一步找出原圖,該操做能夠經過driver.execute_script()添加JS代碼,改變display顯示得到原圖,而後就變成了有原圖的滑動驗證碼的操做流程。app

具體思路:ide

第一步:輸入帳號、密碼,而後點擊登錄

   from selenium import webdriver
   #爲了方便演示與查看結果,在此使用有界面的Chrome瀏覽器,成功以後能夠換成無界面瀏覽器
    driver=webdriver.Chrome()
    #參數爲博客園登陸頁面
    driver.get('https://account.cnblogs.com/signin')
    #隱式等待3秒
    driver.implicitly_wait(3)
    #找到用戶名標籤和密碼標籤,用ID查找
    input_username=driver.find_element_by_id('LoginName')
    input_password=driver.find_element_by_id('Password')
    #輸入用戶名和密碼
    input_username.send_keys('11111111111')
    input_password.send_keys('xxxxxxxxxx')
    #找到提交按鈕
    submitBtn=driver.find_element_by_id('submitBtn')
    #點擊提交
    submitBtn.click()

效果如圖所示:函數

第二步:彈出有缺口的圖,並截取

找到該標籤,經過xpath查找找到位置,(經過classname查找,可能會報錯,緣由未知),這個位置不只是缺口圖的位置,仍是原圖的位置,因此獲取原圖和缺口圖的方式是同樣的工具

先寫一個截圖函數:測試

from PIL import Image
def get_snap(driver):
    #建立一個空的圖片文件
    driver.save_screenshot('snap.png')
    snap_obj=Image.open('snap.png')
    return snap_obj
def get_image(driver):
    #經過xpath找到元素
    img_element = driver.find_element_by_xpath(
        '//div[@class="geetest_panel_next"]//canvas[@class="geetest_canvas_slice geetest_absolute"]')
    #得到圖片的大小和位置
    size = img_element.size
    location = img_element.location
    left=location['x']
    top=location['y']
    right=left+size['width']
    bottom=top+size['height']
    snap_obj=get_snap(driver)
    #注意該參數是元組
    img_obj=snap_obj.crop((left,top,right,bottom))
    return img_obj

 

經過得到的left,top,right,bottom進行截圖spa

第三步:經過JS代碼,顯示原圖

 

 找到該便籤,改變style中的display,其值爲block時顯示的是完好口圖:

如今經過代碼改變該標籤的值:

driver.execute_script("var x=document.getElementsByClassName('geetest_canvas_fullbg geetest_fade geetest_absolute')[0];"
                          "x.style.display='block';"
                          "x.style.opacity=1"
                          )

測試時,有時候,opacity默認爲0,須要變爲1纔會顯示原圖。

顯示原圖以後,由於位置是同樣的,同第二步,使用同一個函數進行截圖。

第四步:對比兩張圖片,即滑動的位移

none_img=get_image(driver)#缺口圖
    driver.execute_script("var x=document.getElementsByClassName('geetest_canvas_fullbg geetest_fade geetest_absolute')[0];"
                          "x.style.display='block';"
                          "x.style.opacity=1"
                          )
block_img=get_image(driver)#原圖

進行圖片滑動的距離的計算:

def get_distance(img1,img2):
    start_x=60#初始X
    threhold=60#閾值
    for x in range(start_x,img1.size[0]):
        for y in range(img1.size[1]):
            rgb1=img1.load()[x,y]
            rgb2=img2.load()[x,y]
            res1=abs(rgb1[0]-rgb2[0])
            res2=abs(rgb1[1]-rgb2[1])
            res3=abs(rgb1[2]-rgb2[2])
            if not (res1<threhold and res2<threhold and res3<threhold):
                return x-7#測試後-7能夠提升成功率

關於初始值:

滑動驗證碼,缺口必定和滑塊有距離,因此滑塊的所佔的X的範圍能夠排除,測量得出滑塊大小約爲60像素(包含邊距),因此start_x=60。

 

第五步:按照人的行爲行爲習慣,把總位移切成一段段小的位移

人的習慣爲:先加速,再減速,可能有超出的現象。

爲了保證更像人,本次有回退步驟

def get_tracks(distance):
    #distance爲上一步得出的總距離。20是等會要回退的像素
    distance+=20
    #初速度爲0,s是已經走的路程,t是時間
    v0=2
    s=0
    t=0.4
   #mid是進行減速的路程
    mid=distance*3/5
   #存放走的距離
    forward_tracks=[]
    while s<distance:
        if s<mid:
            a=2
        else:
            a=-3
        #高中物理,勻加速路程的計算
        v=v0
        tance=v*t+0.5*a*(t**2)
        tance=round(tance)
        s+=tance
        v0=v+a*t
        forward_tracks.append(tance)
    #由於回退20像素,因此能夠手動打出,只要和爲20便可
    back_tracks = [-1, -1, -1, -2, -2, -2, -3, -3, -2, -2, -1]  # 20
    return {"forward_tracks": forward_tracks, 'back_tracks': back_tracks}

 

第六步:按照距離移動

 

#得到滑塊元素
geetest_slider_button=driver.find_element_by_class_name('geetest_slider_button')
    #得到距離
    distance=get_distance(block_img,none_img)
    #得到步數
    tracks_dic=get_tracks(distance)
   #點擊並按住    ActionChains(driver).click_and_hold(geetest_slider_button).perform()
    forword_tracks=tracks_dic['forward_tracks']
    back_tracks=tracks_dic['back_tracks']
    for forword_track in forword_tracks:
        ActionChains(driver).move_by_offset(xoffset=forword_track,yoffset=0).perform()
    #停頓一會,更像人
    time.sleep(0.2)
    for back_tracks in back_tracks:
        ActionChains(driver).move_by_offset(xoffset=back_tracks, yoffset=0).perform()
    print(forword_tracks)
    ActionChains(driver).move_by_offset(xoffset=-3, yoffset=0).perform()
    ActionChains(driver).move_by_offset(xoffset=3, yoffset=0).perform()
    time.sleep(0.3)
    #鬆開鼠標
    ActionChains(driver).release().perform()

 

 完整代碼:

from selenium import webdriver
from selenium.webdriver import ActionChains
from selenium.webdriver.common.keys import Keys
from PIL import Image
import time
driver=webdriver.Chrome()

def get_snap(driver):
    driver.save_screenshot('snap.png')
    snap_obj=Image.open('snap.png')
    return snap_obj
def get_image(driver):
    img_element = driver.find_element_by_xpath(
        '//div[@class="geetest_panel_next"]//canvas[@class="geetest_canvas_slice geetest_absolute"]')
    size = img_element.size
    location = img_element.location
    left=location['x']
    top=location['y']
    right=left+size['width']
    bottom=top+size['height']
    snap_obj=get_snap(driver)
    img_obj=snap_obj.crop((left,top,right,bottom))
    return img_obj
# try:
#     driver.get('https://www.baidu.com')
#     driver.implicitly_wait(5)
#     r1=driver.find_element_by_link_text('登陸').click()
#     driver.find_element_by_id('TANGRAM__PSP_10__footerULoginBtn').click()
#     input_username=driver.find_element_by_id('TANGRAM__PSP_10__userName')
#     input_username.send_keys('17396876501')
#     input_password=driver.find_element_by_id('TANGRAM__PSP_10__password')
#     input_password.send_keys('dfcver')
#     driver.find_element_by_id('TANGRAM__PSP_10__submit').click()
#     time.sleep(5)
# finally:
#     driver.close()
def get_distance(img1,img2):
    start_x=60
    threhold=60#閾值
    for x in range(start_x,img1.size[0]):
        for y in range(img1.size[1]):
            rgb1=img1.load()[x,y]
            rgb2=img2.load()[x,y]
            res1=abs(rgb1[0]-rgb2[0])
            res2=abs(rgb1[1]-rgb2[1])
            res3=abs(rgb1[2]-rgb2[2])
            if not (res1<threhold and res2<threhold and res3<threhold):
                return x-7
def get_tracks(distance):
    distance+=20
    v0=2
    s=0
    t=0.4
    mid=distance*3/5
    forward_tracks=[]
    while s<distance:
        if s<mid:
            a=2
        else:
            a=-3
        v=v0
        tance=v*t+0.5*a*(t**2)
        tance=round(tance)
        s+=tance
        v0=v+a*t
        forward_tracks.append(tance)
    back_tracks = [-1, -1, -1, -2, -2, -2, -3, -3, -2, -2, -1]  # 20
    return {"forward_tracks": forward_tracks, 'back_tracks': back_tracks}

try:
    driver.get('https://account.cnblogs.com/signin')
    driver.implicitly_wait(3)
    input_username=driver.find_element_by_id('LoginName')
    input_password=driver.find_element_by_id('Password')
    input_username.send_keys('928480709')
    input_password.send_keys('dfcver1112223334')
    submitBtn=driver.find_element_by_id('submitBtn')
    submitBtn.click()
    time.sleep(2)#等待驗證碼加載
    none_img=get_image(driver)
    driver.execute_script("var x=document.getElementsByClassName('geetest_canvas_fullbg geetest_fade geetest_absolute')[0];"
                          "x.style.display='block';"
                          "x.style.opacity=1"
                          )
    block_img=get_image(driver)
    geetest_slider_button=driver.find_element_by_class_name('geetest_slider_button')

    distance=get_distance(block_img,none_img)
    tracks_dic=get_tracks(distance)
    ActionChains(driver).click_and_hold(geetest_slider_button).perform()
    forword_tracks=tracks_dic['forward_tracks']
    back_tracks=tracks_dic['back_tracks']
    for forword_track in forword_tracks:
        ActionChains(driver).move_by_offset(xoffset=forword_track,yoffset=0).perform()
    time.sleep(0.2)
    for back_tracks in back_tracks:
        ActionChains(driver).move_by_offset(xoffset=back_tracks, yoffset=0).perform()
    print(forword_tracks)
    ActionChains(driver).move_by_offset(xoffset=-3, yoffset=0).perform()
    ActionChains(driver).move_by_offset(xoffset=3, yoffset=0).perform()
    time.sleep(0.3)
    ActionChains(driver).release().perform()

    time.sleep(60)
finally:
    driver.close()
完整代碼
相關文章
相關標籤/搜索