聊聊緩存淘汰算法-LRU 實現原理

前言

咱們經常使用緩存提高數據查詢速度,因爲緩存容量有限,當緩存容量到達上限,就須要刪除部分數據挪出空間,這樣新數據才能夠添加進來。緩存數據不能隨機刪除,通常狀況下咱們須要根據某種算法刪除緩存數據。經常使用淘汰算法有 LRU,LFU,FIFO,這篇文章咱們聊聊 LRU 算法。java

LRU 簡介

LRU 是 Least Recently Used 的縮寫,這種算法認爲最近使用的數據是熱門數據,下一次很大機率將會再次被使用。而最近不多被使用的數據,很大機率下一次再也不用到。當緩存容量的滿時候,優先淘汰最近不多使用的數據。node

假設如今緩存內部數據如圖所示:算法

image.png

這裏咱們將列表第一個節點稱爲頭結點,最後一個節點爲尾結點。

當調用緩存獲取 key=1 的數據,LRU 算法須要將 1 這個節點移動到頭結點,其他節點不變,如圖所示。數據庫

image.png

而後咱們插入一個 key=8 節點,此時緩存容量到達上限,因此加入以前須要先刪除數據。因爲每次查詢都會將數據移動到頭結點,未被查詢的數據就將會下沉到尾部節點,尾部的數據就能夠認爲是最少被訪問的數據,因此刪除尾結點的數據。編程

image.png

而後咱們直接將數據添加到頭結點。緩存

image.png

這裏總結一下 LRU 算法具體步驟:數據結構

  • 新數據直接插入到列表頭部
  • 緩存數據被命中,將數據移動到列表頭部
  • 緩存已滿的時候,移除列表尾部數據。

LRU 算法實現

上面例子中能夠看到,LRU 算法須要添加頭節點,刪除尾結點。而鏈表添加節點/刪除節點時間複雜度 O(1),很是適合當作存儲緩存數據容器。可是不能使用普通的單向鏈表,單向鏈表有幾點劣勢:ide

  1. 每次獲取任意節點數據,都須要從頭結點遍歷下去,這就致使獲取節點複雜度爲 O(N)。
  2. 移動中間節點到頭結點,咱們須要知道中間節點前一個節點的信息,單向鏈表就不得再也不次遍歷獲取信息。

針對以上問題,能夠結合其餘數據結構解決。this

使用散列表存儲節點,獲取節點的複雜度將會下降爲 O(1)。節點移動問題能夠在節點中再增長前驅指針,記錄上一個節點信息,這樣鏈表就從單向鏈表變成了雙向鏈表。idea

綜上使用雙向鏈表加散列表結合體,數據結構如圖所示:

LRU.png

在雙向鏈表中特地增長兩個『哨兵』節點,不用來存儲任何數據。使用哨兵節點,增長/刪除節點的時候就能夠不用考慮邊界節點不存在狀況,簡化編程難度,下降代碼複雜度。

LRU 算法實現代碼以下,爲了簡化 key ,val 都認爲 int 類型。

public class LRUCache {

    Entry head, tail;
    int capacity;
    int size;
    Map<Integer, Entry> cache;


    public LRUCache(int capacity) {
        this.capacity = capacity;
        // 初始化鏈表
        initLinkedList();
        size = 0;
        cache = new HashMap<>(capacity + 2);
    }

    /**
     * 若是節點不存在,返回 -1.若是存在,將節點移動到頭結點,並返回節點的數據。
     *
     * @param key
     * @return
     */
    public int get(int key) {
        Entry node = cache.get(key);
        if (node == null) {
            return -1;
        }
        // 存在移動節點
        moveToHead(node);
        return node.value;
    }

    /**
     * 將節點加入到頭結點,若是容量已滿,將會刪除尾結點
     *
     * @param key
     * @param value
     */
    public void put(int key, int value) {
        Entry node = cache.get(key);
        if (node != null) {
            node.value = value;
            moveToHead(node);
            return;
        }
        // 不存在。先加進去,再移除尾結點
        // 此時容量已滿 刪除尾結點
        if (size == capacity) {
            Entry lastNode = tail.pre;
            deleteNode(lastNode);
            cache.remove(lastNode.key);
            size--;
        }
        // 加入頭結點

        Entry newNode = new Entry();
        newNode.key = key;
        newNode.value = value;
        addNode(newNode);
        cache.put(key, newNode);
        size++;

    }

    private void moveToHead(Entry node) {
        // 首先刪除原來節點的關係
        deleteNode(node);
        addNode(node);
    }

    private void addNode(Entry node) {
        head.next.pre = node;
        node.next = head.next;

        node.pre = head;
        head.next = node;
    }

    private void deleteNode(Entry node) {
        node.pre.next = node.next;
        node.next.pre = node.pre;
    }


    public static class Entry {
        public Entry pre;
        public Entry next;
        public int key;
        public int value;

        public Entry(int key, int value) {
            this.key = key;
            this.value = value;
        }

        public Entry() {
        }
    }

    private void initLinkedList() {
        head = new Entry();
        tail = new Entry();

        head.next = tail;
        tail.pre = head;

    }

    public static void main(String[] args) {

        LRUCache cache = new LRUCache(2);

        cache.put(1, 1);
        cache.put(2, 2);
        System.out.println(cache.get(1));
        cache.put(3, 3);
        System.out.println(cache.get(2));

    }
}

LRU 算法分析

緩存命中率是緩存系統的很是重要指標,若是緩存系統的緩存命中率太低,將會致使查詢迴流到數據庫,致使數據庫的壓力升高。

結合以上分析 LRU 算法優缺點。

LRU 算法優點在於算法實現難度不大,對於對於熱點數據, LRU 效率會很好。

LRU 算法劣勢在於對於偶發的批量操做,好比說批量查詢歷史數據,就有可能使緩存中熱門數據被這些歷史數據替換,形成緩存污染,致使緩存命中率降低,減慢了正常數據查詢。

LRU 算法改進方案

如下方案來源與 MySQL InnoDB LRU 改進算法

將鏈表拆分紅兩部分,分爲熱數據區,與冷數據區,如圖所示。

LRUimmprove.png

改進以後算法流程將會變成下面同樣:

  1. 訪問數據若是位於熱數據區,與以前 LRU 算法同樣,移動到熱數據區的頭結點。
  2. 插入數據時,若緩存已滿,淘汰尾結點的數據。而後將數據插入冷數據區的頭結點。
  3. 處於冷數據區的數據每次被訪問須要作以下判斷:

    • 若該數據已在緩存中超過指定時間,好比說 1 s,則移動到熱數據區的頭結點。
    • 若該數據存在在時間小於指定的時間,則位置保持不變。

對於偶發的批量查詢,數據僅僅只會落入冷數據區,而後很快就會被淘汰出去。熱門數據區的數據將不會受到影響,這樣就解決了 LRU 算法緩存命中率降低的問題。

其餘改進方法還有 LRU-K,2Q,LIRS 算法,感興趣同窗能夠自行查閱。

歡迎關注個人公衆號:程序通事,得到平常乾貨推送。若是您對個人專題內容感興趣,也能夠關注個人博客: studyidea.cn

其餘平臺.png

相關文章
相關標籤/搜索