數學基礎

高等數學

1.導數定義:html

導數和微分的概念算法

f'({{x}_{0}})=\underset{\Delta x\to 0}{\mathop{\lim }}\,\frac{f({{x}_{0}}+\Delta x)-f({{x}_{0}})}{\Delta x} (1)函數

或者:htm

f'({{x}_{0}})=\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\frac{f(x)-f({{x}_{0}})}{x-{{x}_{0}}} (2)對象

2.左右導數導數的幾何意義和物理意義事件

函數f(x)x_0處的左、右導數分別定義爲:內存

左導數:{{{f}'}_{-}}({{x}_{0}})=\underset{\Delta x\to {{0}^{-}}}{\mathop{\lim }}\,\frac{f({{x}_{0}}+\Delta x)-f({{x}_{0}})}{\Delta x}=\underset{x\to x_{0}^{-}}{\mathop{\lim }}\,\frac{f(x)-f({{x}_{0}})}{x-{{x}_{0}}},(x={{x}_{0}}+\Delta x)get

右導數:{{{f}'}_{+}}({{x}_{0}})=\underset{\Delta x\to {{0}^{+}}}{\mathop{\lim }}\,\frac{f({{x}_{0}}+\Delta x)-f({{x}_{0}})}{\Delta x}=\underset{x\to x_{0}^{+}}{\mathop{\lim }}\,\frac{f(x)-f({{x}_{0}})}{x-{{x}_{0}}}數學

3.函數的可導性與連續性之間的關係it

Th1: 函數f(x)x_0處可微\Leftrightarrow f(x)x_0處可導

Th2: 若函數在點x_0處可導,則y=f(x)在點x_0處連續,反之則不成立。即函數連續不必定可導。

Th3: {f}'({{x}_{0}})存在\Leftrightarrow {{{f}'}_{-}}({{x}_{0}})={{{f}'}_{+}}({{x}_{0}})

4.平面曲線的切線和法線

切線方程 : y-{{y}_{0}}=f'({{x}_{0}})(x-{{x}_{0}}) 法線方程:y-{{y}_{0}}=-\frac{1}{f'({{x}_{0}})}(x-{{x}_{0}}),f'({{x}_{0}})\ne 0

5.四則運算法則 設函數u=u(x),v=v(x)]在點x可導則 (1) (u\pm v{)}'={u}'\pm {v}' d(u\pm v)=du\pm dv (2)(uv{)}'=u{v}'+v{u}' d(uv)=udv+vdu (3) (\frac{u}{v}{)}'=\frac{v{u}'-u{v}'}{{{v}^{2}}}(v\ne 0) d(\frac{u}{v})=\frac{vdu-udv}{{{v}^{2}}}

6.基本導數與微分表 (1) y=c(常數) {y}'=0 dy=0 (2) y={{x}^{\alpha }}(\alpha爲實數) {y}'=\alpha {{x}^{\alpha -1}} dy=\alpha {{x}^{\alpha -1}}dx (3) y={{a}^{x}} {y}'={{a}^{x}}\ln a dy={{a}^{x}}\ln adx 特例: ({{{e}}^{x}}{)}'={{{e}}^{x}} d({{{e}}^{x}})={{{e}}^{x}}dx

(4) y={{\log }_{a}}x {y}'=\frac{1}{x\ln a}

dy=\frac{1}{x\ln a}dx 特例:y=\ln x (\ln x{)}'=\frac{1}{x} d(\ln x)=\frac{1}{x}dx

(5) y=\sin x

{y}'=\cos x d(\sin x)=\cos xdx

(6) y=\cos x

{y}'=-\sin x d(\cos x)=-\sin xdx

(7) y=\tan x

{y}'=\frac{1}{{{\cos }^{2}}x}={{\sec }^{2}}x d(\tan x)={{\sec }^{2}}xdx (8) y=\cot x {y}'=-\frac{1}{{{\sin }^{2}}x}=-{{\csc }^{2}}x d(\cot x)=-{{\csc }^{2}}xdx (9) y=\sec x {y}'=\sec x\tan x

d(\sec x)=\sec x\tan xdx (10) y=\csc x {y}'=-\csc x\cot x

d(\csc x)=-\csc x\cot xdx (11) y=\arcsin x

{y}'=\frac{1}{\sqrt{1-{{x}^{2}}}}

d(\arcsin x)=\frac{1}{\sqrt{1-{{x}^{2}}}}dx (12) y=\arccos x

{y}'=-\frac{1}{\sqrt{1-{{x}^{2}}}} d(\arccos x)=-\frac{1}{\sqrt{1-{{x}^{2}}}}dx

(13) y=\arctan x

{y}'=\frac{1}{1+{{x}^{2}}} d(\arctan x)=\frac{1}{1+{{x}^{2}}}dx

(14) y=\operatorname{arc}\cot x

{y}'=-\frac{1}{1+{{x}^{2}}}

d(\operatorname{arc}\cot x)=-\frac{1}{1+{{x}^{2}}}dx (15) y=shx

{y}'=chx d(shx)=chxdx

(16) y=chx

{y}'=shx d(chx)=shxdx

7.複合函數,反函數,隱函數以及參數方程所肯定的函數的微分法

(1) 反函數的運算法則: 設y=f(x)在點x的某鄰域內單調連續,在點x處可導且{f}'(x)\ne 0,則其反函數在點x所對應的y處可導,而且有\frac{dy}{dx}=\frac{1}{\frac{dx}{dy}} (2) 複合函數的運算法則:若\mu =\varphi (x)在點x可導,而y=f(\mu )在對應點\mu(\mu =\varphi (x))可導,則複合函數y=f(\varphi (x))在點x可導,且{y}'={f}'(\mu )\cdot {\varphi }'(x) (3) 隱函數導數\frac{dy}{dx}的求法通常有三種方法: 1)方程兩邊對x求導,要記住yx的函數,則y的函數是x的複合函數.例如\frac{1}{y}{{y}^{2}}ln y{{{e}}^{y}}等均是x的複合函數. 對x求導應按複合函數連鎖法則作. 2)公式法.由F(x,y)=0\frac{dy}{dx}=-\frac{{{{{F}'}}_{x}}(x,y)}{{{{{F}'}}_{y}}(x,y)},其中,{{{F}'}_{x}}(x,y){{{F}'}_{y}}(x,y)分別表示F(x,y)xy的偏導數 3)利用微分形式不變性

8.經常使用高階導數公式

(1)({{a}^{x}}){{\,}^{(n)}}={{a}^{x}}{{\ln }^{n}}a\quad (a>{0})\quad \quad ({{{e}}^{x}}){{\,}^{(n)}}={e}{{\,}^{x}} (2)(\sin kx{)}{{\,}^{(n)}}={{k}^{n}}\sin (kx+n\cdot \frac{\pi }{{2}}) (3)(\cos kx{)}{{\,}^{(n)}}={{k}^{n}}\cos (kx+n\cdot \frac{\pi }{{2}}) (4)({{x}^{m}}){{\,}^{(n)}}=m(m-1)\cdots (m-n+1){{x}^{m-n}} (5)(\ln x){{\,}^{(n)}}={{(-{1})}^{(n-{1})}}\frac{(n-{1})!}{{{x}^{n}}} (6)萊布尼茲公式:若u(x)\,,v(x)n階可導,則 {{(uv)}^{(n)}}=\sum\limits_{i={0}}^{n}{c_{n}^{i}{{u}^{(i)}}{{v}^{(n-i)}}},其中{{u}^{({0})}}=u{{v}^{({0})}}=v

9.微分中值定理,泰勒公式

Th1:(費馬定理)

若函數f(x)知足條件: (1)函數f(x){{x}_{0}}的某鄰域內有定義,而且在此鄰域內恆有 f(x)\le f({{x}_{0}})f(x)\ge f({{x}_{0}}),

(2) f(x){{x}_{0}}處可導,則有 {f}'({{x}_{0}})=0

Th2:(羅爾定理)

設函數f(x)知足條件: (1)在閉區間[a,b]上連續;

(2)在(a,b)內可導;

(3)f(a)=f(b)

則在(a,b)內一存在個\xi,使 {f}'(\xi )=0 Th3: (拉格朗日中值定理)

設函數f(x)知足條件: (1)在[a,b]上連續;

(2)在(a,b)內可導;

則在(a,b)內一存在個\xi,使 \frac{f(b)-f(a)}{b-a}={f}'(\xi )

Th4: (柯西中值定理)

設函數f(x)g(x)知足條件: (1) 在[a,b]上連續;

(2) 在(a,b)內可導且{f}'(x){g}'(x)均存在,且{g}'(x)\ne 0

則在(a,b)內存在一個\xi,使 \frac{f(b)-f(a)}{g(b)-g(a)}=\frac{{f}'(\xi )}{{g}'(\xi )}

10.洛必達法則 法則Ⅰ (\frac{0}{0}型) 設函數f\left( x \right),g\left( x \right)知足條件: \underset{x\to {{x}_{0}}}{\mathop{\lim }}\,f\left( x \right)=0,\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,g\left( x \right)=0;

f\left( x \right),g\left( x \right){{x}_{0}}的鄰域內可導,(在{{x}_{0}}處可除外)且{g}'\left( x \right)\ne 0;

\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\frac{{f}'\left( x \right)}{{g}'\left( x \right)}存在(或\infty)。

則: \underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\frac{f\left( x \right)}{g\left( x \right)}=\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\frac{{f}'\left( x \right)}{{g}'\left( x \right)}。 法則{{I}'} (\frac{0}{0}型)設函數f\left( x \right),g\left( x \right)知足條件: \underset{x\to \infty }{\mathop{\lim }}\,f\left( x \right)=0,\underset{x\to \infty }{\mathop{\lim }}\,g\left( x \right)=0;

存在一個X>0,當\left| x \right|>X時,f\left( x \right),g\left( x \right)可導,且{g}'\left( x \right)\ne 0;\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\frac{{f}'\left( x \right)}{{g}'\left( x \right)}存在(或\infty)。

則: \underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\frac{f\left( x \right)}{g\left( x \right)}=\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\frac{{f}'\left( x \right)}{{g}'\left( x \right)} 法則Ⅱ(\frac{\infty }{\infty }型) 設函數f\left( x \right),g\left( x \right)知足條件: \underset{x\to {{x}_{0}}}{\mathop{\lim }}\,f\left( x \right)=\infty ,\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,g\left( x \right)=\infty; f\left( x \right),g\left( x \right){{x}_{0}} 的鄰域內可導(在{{x}_{0}}處可除外)且{g}'\left( x \right)\ne 0;\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\frac{{f}'\left( x \right)}{{g}'\left( x \right)}存在(或\infty)。則 \underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\frac{f\left( x \right)}{g\left( x \right)}=\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\frac{{f}'\left( x \right)}{{g}'\left( x \right)}.同理法則{I{I}'}(\frac{\infty }{\infty }型)仿法則{{I}'}可寫出。

11.泰勒公式

設函數f(x)在點{{x}_{0}}處的某鄰域內具備n+1階導數,則對該鄰域內異於{{x}_{0}}的任意點x,在{{x}_{0}}x之間至少存在 一個\xi,使得: f(x)=f({{x}_{0}})+{f}'({{x}_{0}})(x-{{x}_{0}})+\frac{1}{2!}{f}''({{x}_{0}}){{(x-{{x}_{0}})}^{2}}+\cdots +\frac{{{f}^{(n)}}({{x}_{0}})}{n!}{{(x-{{x}_{0}})}^{n}}+{{R}_{n}}(x) 其中 {{R}_{n}}(x)=\frac{{{f}^{(n+1)}}(\xi )}{(n+1)!}{{(x-{{x}_{0}})}^{n+1}}稱爲f(x)在點{{x}_{0}}處的n階泰勒餘項。

{{x}_{0}}=0,則n階泰勒公式 f(x)=f(0)+{f}'(0)x+\frac{1}{2!}{f}''(0){{x}^{2}}+\cdots +\frac{{{f}^{(n)}}(0)}{n!}{{x}^{n}}+{{R}_{n}}(x)……(1) 其中 {{R}_{n}}(x)=\frac{{{f}^{(n+1)}}(\xi )}{(n+1)!}{{x}^{n+1}}\xi在0與x之間.(1)式稱爲麥克勞林公式

經常使用五種函數在{{x}_{0}}=0處的泰勒公式

(1) {{{e}}^{x}}=1+x+\frac{1}{2!}{{x}^{2}}+\cdots +\frac{1}{n!}{{x}^{n}}+\frac{{{x}^{n+1}}}{(n+1)!}{{e}^{\xi }}

=1+x+\frac{1}{2!}{{x}^{2}}+\cdots +\frac{1}{n!}{{x}^{n}}+o({{x}^{n}})

(2) \sin x=x-\frac{1}{3!}{{x}^{3}}+\cdots +\frac{{{x}^{n}}}{n!}\sin \frac{n\pi }{2}+\frac{{{x}^{n+1}}}{(n+1)!}\sin (\xi +\frac{n+1}{2}\pi )

=x-\frac{1}{3!}{{x}^{3}}+\cdots +\frac{{{x}^{n}}}{n!}\sin \frac{n\pi }{2}+o({{x}^{n}})

(3) \cos x=1-\frac{1}{2!}{{x}^{2}}+\cdots +\frac{{{x}^{n}}}{n!}\cos \frac{n\pi }{2}+\frac{{{x}^{n+1}}}{(n+1)!}\cos (\xi +\frac{n+1}{2}\pi )

=1-\frac{1}{2!}{{x}^{2}}+\cdots +\frac{{{x}^{n}}}{n!}\cos \frac{n\pi }{2}+o({{x}^{n}})

(4) \ln (1+x)=x-\frac{1}{2}{{x}^{2}}+\frac{1}{3}{{x}^{3}}-\cdots +{{(-1)}^{n-1}}\frac{{{x}^{n}}}{n}+\frac{{{(-1)}^{n}}{{x}^{n+1}}}{(n+1){{(1+\xi )}^{n+1}}}

=x-\frac{1}{2}{{x}^{2}}+\frac{1}{3}{{x}^{3}}-\cdots +{{(-1)}^{n-1}}\frac{{{x}^{n}}}{n}+o({{x}^{n}})

(5) {{(1+x)}^{m}}=1+mx+\frac{m(m-1)}{2!}{{x}^{2}}+\cdots +\frac{m(m-1)\cdots (m-n+1)}{n!}{{x}^{n}} +\frac{m(m-1)\cdots (m-n+1)}{(n+1)!}{{x}^{n+1}}{{(1+\xi )}^{m-n-1}}

{{(1+x)}^{m}}=1+mx+\frac{m(m-1)}{2!}{{x}^{2}}+\cdots +\frac{m(m-1)\cdots (m-n+1)}{n!}{{x}^{n}}+o({{x}^{n}})

12.函數單調性的判斷 Th1: 設函數f(x)(a,b)區間內可導,若是對\forall x\in (a,b),都有f\,'(x)>0(或f\,'(x)<0),則函數f(x)(a,b)內是單調增長的(或單調減小)

Th2: (取極值的必要條件)設函數f(x){{x}_{0}}處可導,且在{{x}_{0}}處取極值,則f\,'({{x}_{0}})=0

Th3: (取極值的第一充分條件)設函數f(x){{x}_{0}}的某一鄰域內可微,且f\,'({{x}_{0}})=0(或f(x){{x}_{0}}處連續,但f\,'({{x}_{0}})不存在。) (1)若當x通過{{x}_{0}}時,f\,'(x)由「+」變「-」,則f({{x}_{0}})爲極大值; (2)若當x通過{{x}_{0}}時,f\,'(x)由「-」變「+」,則f({{x}_{0}})爲極小值; (3)若f\,'(x)通過x={{x}_{0}}的兩側不變號,則f({{x}_{0}})不是極值。

Th4: (取極值的第二充分條件)設f(x)在點{{x}_{0}}處有f''(x)\ne 0,且f\,'({{x}_{0}})=0,則 當f'\,'({{x}_{0}})<0時,f({{x}_{0}})爲極大值; 當f'\,'({{x}_{0}})>0時,f({{x}_{0}})爲極小值。 注:若是f'\,'({{x}_{0}})<0,此方法失效。

13.漸近線的求法 (1)水平漸近線 若\underset{x\to +\infty }{\mathop{\lim }}\,f(x)=b,或\underset{x\to -\infty }{\mathop{\lim }}\,f(x)=b,則

y=b稱爲函數y=f(x)的水平漸近線。

(2)鉛直漸近線 若\underset{x\to x_{0}^{-}}{\mathop{\lim }}\,f(x)=\infty,或\underset{x\to x_{0}^{+}}{\mathop{\lim }}\,f(x)=\infty,則

x={{x}_{0}}稱爲y=f(x)的鉛直漸近線。

(3)斜漸近線 若a=\underset{x\to \infty }{\mathop{\lim }}\,\frac{f(x)}{x},\quad b=\underset{x\to \infty }{\mathop{\lim }}\,[f(x)-ax],則 y=ax+b稱爲y=f(x)的斜漸近線。

14.函數凹凸性的判斷 Th1: (凹凸性的判別定理)若在I上f''(x)<0(或f''(x)>0),則f(x)在I上是凸的(或凹的)。

Th2: (拐點的判別定理1)若在{{x}_{0}}f''(x)=0,(或f''(x)不存在),當x變更通過{{x}_{0}}時,f''(x)變號,則({{x}_{0}},f({{x}_{0}}))爲拐點。

Th3: (拐點的判別定理2)設f(x){{x}_{0}}點的某鄰域內有三階導數,且f''(x)=0f'''(x)\ne 0,則({{x}_{0}},f({{x}_{0}}))爲拐點。

15.弧微分

dS=\sqrt{1+y{{'}^{2}}}dx

16.曲率

曲線y=f(x)在點(x,y)處的曲率k=\frac{\left| y'' \right|}{{{(1+y{{'}^{2}})}^{\tfrac{3}{2}}}}。 對於參數方程\left\{ \begin{align}  & x=\varphi (t) \\  & y=\psi (t) \\ \end{align} \right.,k=\frac{\left| \varphi '(t)\psi ''(t)-\varphi ''(t)\psi '(t) \right|}{{{[\varphi {{'}^{2}}(t)+\psi {{'}^{2}}(t)]}^{\tfrac{3}{2}}}}

17.曲率半徑

曲線在點M處的曲率k(k\ne 0)與曲線在點M處的曲率半徑\rho有以下關係:\rho =\frac{1}{k}

線性代數

行列式

1.行列式按行(列)展開定理

(1) 設A = ( a_{{ij}} )_{n \times n},則:a_{i1}A_{j1} +a_{i2}A_{j2} + \cdots + a_{{in}}A_{{jn}} = \begin{cases}|A|,i=j\\ 0,i \neq j\end{cases}

a_{1i}A_{1j} + a_{2i}A_{2j} + \cdots + a_{{ni}}A_{{nj}} = \begin{cases}|A|,i=j\\ 0,i \neq j\end{cases}AA^{*} = A^{*}A = \left| A \right|E,其中:A^{*} = \begin{pmatrix} A_{11} & A_{12} & \ldots & A_{1n} \\ A_{21} & A_{22} & \ldots & A_{2n} \\ \ldots & \ldots & \ldots & \ldots \\ A_{n1} & A_{n2} & \ldots & A_{{nn}} \\ \end{pmatrix} = (A_{{ji}}) = {(A_{{ij}})}^{T}

D_{n} = \begin{vmatrix} 1 & 1 & \ldots & 1 \\ x_{1} & x_{2} & \ldots & x_{n} \\ \ldots & \ldots & \ldots & \ldots \\ x_{1}^{n - 1} & x_{2}^{n - 1} & \ldots & x_{n}^{n - 1} \\ \end{vmatrix} = \prod_{1 \leq j < i \leq n}^{}\,(x_{i} - x_{j})

(2) 設A,Bn階方陣,則\left| {AB} \right| = \left| A \right|\left| B \right| = \left| B \right|\left| A \right| = \left| {BA} \right|,但\left| A \pm B \right| = \left| A \right| \pm \left| B \right|不必定成立。

(3) \left| {kA} \right| = k^{n}\left| A \right|,An階方陣。

(4) 設An階方陣,|A^{T}| = |A|;|A^{- 1}| = |A|^{- 1}(若A可逆),|A^{*}| = |A|^{n - 1}

n \geq 2

(5) \left| \begin{matrix}  & {A\quad O} \\  & {O\quad B} \\ \end{matrix} \right| = \left| \begin{matrix}  & {A\quad C} \\  & {O\quad B} \\ \end{matrix} \right| = \left| \begin{matrix}  & {A\quad O} \\  & {C\quad B} \\ \end{matrix} \right| =| A||B|A,B爲方陣,但\left| \begin{matrix} {O} & A_{m \times m} \\  B_{n \times n} & { O} \\ \end{matrix} \right| = ({- 1)}^{{mn}}|A||B|

(6) 範德蒙行列式D_{n} = \begin{vmatrix} 1 & 1 & \ldots & 1 \\ x_{1} & x_{2} & \ldots & x_{n} \\ \ldots & \ldots & \ldots & \ldots \\ x_{1}^{n - 1} & x_{2}^{n 1} & \ldots & x_{n}^{n - 1} \\ \end{vmatrix} =  \prod_{1 \leq j < i \leq n}^{}\,(x_{i} - x_{j})

An階方陣,\lambda_{i}(i = 1,2\cdots,n)An個特徵值,則 |A| = \prod_{i = 1}^{n}\lambda_{i}

矩陣

矩陣:m \times n個數a_{{ij}}排成mn列的表格\begin{bmatrix}  a_{11}\quad a_{12}\quad\cdots\quad a_{1n} \\ a_{21}\quad a_{22}\quad\cdots\quad a_{2n} \\ \quad\cdots\cdots\cdots\cdots\cdots \\  a_{m1}\quad a_{m2}\quad\cdots\quad a_{{mn}} \\ \end{bmatrix} 稱爲矩陣,簡記爲A,或者\left( a_{{ij}} \right)_{m \times n} 。若m = n,則稱An階矩陣或n階方陣。

矩陣的線性運算

1.矩陣的加法

A = (a_{{ij}}),B = (b_{{ij}})是兩個m \times n矩陣,則m \times n 矩陣C = c_{{ij}}) = a_{{ij}} + b_{{ij}}稱爲矩陣AB的和,記爲A + B = C

2.矩陣的數乘

A = (a_{{ij}})m \times n矩陣,k是一個常數,則m \times n矩陣(ka_{{ij}})稱爲數k與矩陣A的數乘,記爲{kA}

3.矩陣的乘法

A = (a_{{ij}})m \times n矩陣,B = (b_{{ij}})n \times s矩陣,那麼m \times s矩陣C = (c_{{ij}}),其中c_{{ij}} = a_{i1}b_{1j} + a_{i2}b_{2j} + \cdots + a_{{in}}b_{{nj}} = \sum_{k =1}^{n}{a_{{ik}}b_{{kj}}}稱爲{AB}的乘積,記爲C = AB

4. \mathbf{A}^{\mathbf{T}}\mathbf{A}^{\mathbf{-1}}\mathbf{A}^{\mathbf{*}}三者之間的關係

(1) {(A^{T})}^{T} = A,{(AB)}^{T} = B^{T}A^{T},{(kA)}^{T} = kA^{T},{(A \pm B)}^{T} = A^{T} \pm B^{T}

(2) \left( A^{- 1} \right)^{- 1} = A,\left( {AB} \right)^{- 1} = B^{- 1}A^{- 1},\left( {kA} \right)^{- 1} = \frac{1}{k}A^{- 1},

{(A \pm B)}^{- 1} = A^{- 1} \pm B^{- 1}不必定成立。

(3) \left( A^{*} \right)^{*} = |A|^{n - 2}\ A\ \ (n \geq 3)\left({AB} \right)^{*} = B^{*}A^{*}, \left( {kA} \right)^{*} = k^{n -1}A^{*}{\ \ }\left( n \geq 2 \right)

\left( A \pm B \right)^{*} = A^{*} \pm B^{*}不必定成立。

(4) {(A^{- 1})}^{T} = {(A^{T})}^{- 1},\ \left( A^{- 1} \right)^{*} ={(AA^{*})}^{- 1},{(A^{*})}^{T} = \left( A^{T} \right)^{*}

5.有關\mathbf{A}^{\mathbf{*}}的結論

(1) AA^{*} = A^{*}A = |A|E

(2) |A^{*}| = |A|^{n - 1}\ (n \geq 2),\ \ \ \ {(kA)}^{*} = k^{n -1}A^{*},{{\ \ }\left( A^{*} \right)}^{*} = |A|^{n - 2}A(n \geq 3)

(3) 若A可逆,則A^{*} = |A|A^{- 1},{(A^{*})}^{*} = \frac{1}{|A|}A

(4) 若An階方陣,則:

r(A^*)=\begin{cases}n,\quad r(A)=n\\ 1,\quad r(A)=n-1\\ 0,\quad r(A)<n-1\end{cases}

6.有關\mathbf{A}^{\mathbf{- 1}}的結論

A可逆\Leftrightarrow AB = E; \Leftrightarrow |A| \neq 0; \Leftrightarrow r(A) = n;

\Leftrightarrow A能夠表示爲初等矩陣的乘積;\Leftrightarrow A;\Leftrightarrow Ax = 0

7.有關矩陣秩的結論

(1) 秩r(A)=行秩=列秩;

(2) r(A_{m \times n}) \leq \min(m,n);

(3) A \neq 0 \Rightarrow r(A) \geq 1

(4) r(A \pm B) \leq r(A) + r(B);

(5) 初等變換不改變矩陣的秩

(6) r(A) + r(B) - n \leq r(AB) \leq \min(r(A),r(B)),特別若AB = O 則:r(A) + r(B) \leq n

(7) 若A^{- 1}存在\Rightarrow r(AB) = r(B);B^{- 1}存在 \Rightarrow r(AB) = r(A);

r(A_{m \times n}) = n \Rightarrow r(AB) = r(B);r(A_{m \times s}) = n\Rightarrow r(AB) = r\left( A \right)

(8) r(A_{m \times s}) = n \Leftrightarrow Ax = 0只有零解

8.分塊求逆公式

\begin{pmatrix} A & O \\ O & B \\ \end{pmatrix}^{- 1} = \begin{pmatrix} A^{-1} & O \\ O & B^{- 1} \\ \end{pmatrix}\begin{pmatrix} A & C \\ O & B \\\end{pmatrix}^{- 1} = \begin{pmatrix} A^{- 1}& - A^{- 1}CB^{- 1} \\ O & B^{- 1} \\ \end{pmatrix}

\begin{pmatrix} A & O \\ C & B \\ \end{pmatrix}^{- 1} = \begin{pmatrix}  A^{- 1}&{O} \\   - B^{- 1}CA^{- 1} & B^{- 1} \\\end{pmatrix}\begin{pmatrix} O & A \\ B & O \\ \end{pmatrix}^{- 1} =\begin{pmatrix} O & B^{- 1} \\ A^{- 1} & O \\ \end{pmatrix}

這裏AB均爲可逆方陣。

向量

1.有關向量組的線性表示

(1)\alpha_{1},\alpha_{2},\cdots,\alpha_{s}線性相關\Leftrightarrow至少有一個向量能夠用其他向量線性表示。

(2)\alpha_{1},\alpha_{2},\cdots,\alpha_{s}線性無關,\alpha_{1},\alpha_{2},\cdots,\alpha_{s}\beta線性相關\Leftrightarrow \beta能夠由\alpha_{1},\alpha_{2},\cdots,\alpha_{s}惟一線性表示。

(3) \beta能夠由\alpha_{1},\alpha_{2},\cdots,\alpha_{s}線性表示 \Leftrightarrow r(\alpha_{1},\alpha_{2},\cdots,\alpha_{s}) =r(\alpha_{1},\alpha_{2},\cdots,\alpha_{s},\beta)

2.有關向量組的線性相關性

(1)部分相關,總體相關;總體無關,部分無關.

(2) ① nn維向量 \alpha_{1},\alpha_{2}\cdots\alpha_{n}線性無關\Leftrightarrow \left|\left\lbrack \alpha_{1}\alpha_{2}\cdots\alpha_{n} \right\rbrack \right| \neq0nn維向量\alpha_{1},\alpha_{2}\cdots\alpha_{n}線性相關 \Leftrightarrow |\lbrack\alpha_{1},\alpha_{2},\cdots,\alpha_{n}\rbrack| = 0

n + 1n維向量線性相關。

③ 若\alpha_{1},\alpha_{2}\cdots\alpha_{S}線性無關,則添加份量後仍線性無關;或一組向量線性相關,去掉某些份量後仍線性相關。

3.有關向量組的線性表示

(1) \alpha_{1},\alpha_{2},\cdots,\alpha_{s}線性相關\Leftrightarrow至少有一個向量能夠用其他向量線性表示。

(2) \alpha_{1},\alpha_{2},\cdots,\alpha_{s}線性無關,\alpha_{1},\alpha_{2},\cdots,\alpha_{s}\beta線性相關\Leftrightarrow\beta 能夠由\alpha_{1},\alpha_{2},\cdots,\alpha_{s}惟一線性表示。

(3) \beta能夠由\alpha_{1},\alpha_{2},\cdots,\alpha_{s}線性表示 \Leftrightarrow r(\alpha_{1},\alpha_{2},\cdots,\alpha_{s}) =r(\alpha_{1},\alpha_{2},\cdots,\alpha_{s},\beta)

4.向量組的秩與矩陣的秩之間的關係

r(A_{m \times n}) =r,則A的秩r(A)A的行列向量組的線性相關性關係爲:

(1) 若r(A_{m \times n}) = r = m,則A的行向量組線性無關。

(2) 若r(A_{m \times n}) = r < m,則A的行向量組線性相關。

(3) 若r(A_{m \times n}) = r = n,則A的列向量組線性無關。

(4) 若r(A_{m \times n}) = r < n,則A的列向量組線性相關。

5.\mathbf{n}維向量空間的基變換公式及過渡矩陣

\alpha_{1},\alpha_{2},\cdots,\alpha_{n}\beta_{1},\beta_{2},\cdots,\beta_{n}是向量空間V的兩組基,則基變換公式爲:

(\beta_{1},\beta_{2},\cdots,\beta_{n}) = (\alpha_{1},\alpha_{2},\cdots,\alpha_{n})\begin{bmatrix}  c_{11}& c_{12}& \cdots & c_{1n} \\  c_{21}& c_{22}&\cdots & c_{2n} \\ \cdots & \cdots & \cdots & \cdots \\  c_{n1}& c_{n2} & \cdots & c_{{nn}} \\\end{bmatrix} = (\alpha_{1},\alpha_{2},\cdots,\alpha_{n})C

其中C是可逆矩陣,稱爲由基\alpha_{1},\alpha_{2},\cdots,\alpha_{n}到基\beta_{1},\beta_{2},\cdots,\beta_{n}的過渡矩陣。

6.座標變換公式

若向量\gamma在基\alpha_{1},\alpha_{2},\cdots,\alpha_{n}與基\beta_{1},\beta_{2},\cdots,\beta_{n}的座標分別是 X = {(x_{1},x_{2},\cdots,x_{n})}^{T}

Y = \left( y_{1},y_{2},\cdots,y_{n} \right)^{T} 即: \gamma =x_{1}\alpha_{1} + x_{2}\alpha_{2} + \cdots + x_{n}\alpha_{n} = y_{1}\beta_{1} +y_{2}\beta_{2} + \cdots + y_{n}\beta_{n},則向量座標變換公式爲X = CYY = C^{- 1}X,其中C是從基\alpha_{1},\alpha_{2},\cdots,\alpha_{n}到基\beta_{1},\beta_{2},\cdots,\beta_{n}的過渡矩陣。

7.向量的內積

(\alpha,\beta) = a_{1}b_{1} + a_{2}b_{2} + \cdots + a_{n}b_{n} = \alpha^{T}\beta = \beta^{T}\alpha

8.Schmidt正交化

\alpha_{1},\alpha_{2},\cdots,\alpha_{s}線性無關,則可構造\beta_{1},\beta_{2},\cdots,\beta_{s}使其兩兩正交,且\beta_{i}僅是\alpha_{1},\alpha_{2},\cdots,\alpha_{i}的線性組合(i= 1,2,\cdots,n),再把\beta_{i}單位化,記\gamma_{i} =\frac{\beta_{i}}{\left| \beta_{i}\right|},則\gamma_{1},\gamma_{2},\cdots,\gamma_{i}是規範正交向量組。其中 \beta_{1} = \alpha_{1}\beta_{2} = \alpha_{2} -\frac{(\alpha_{2},\beta_{1})}{(\beta_{1},\beta_{1})}\beta_{1}\beta_{3} =\alpha_{3} - \frac{(\alpha_{3},\beta_{1})}{(\beta_{1},\beta_{1})}\beta_{1} -\frac{(\alpha_{3},\beta_{2})}{(\beta_{2},\beta_{2})}\beta_{2}

............

\beta_{s} = \alpha_{s} - \frac{(\alpha_{s},\beta_{1})}{(\beta_{1},\beta_{1})}\beta_{1} - \frac{(\alpha_{s},\beta_{2})}{(\beta_{2},\beta_{2})}\beta_{2} - \cdots - \frac{(\alpha_{s},\beta_{s - 1})}{(\beta_{s - 1},\beta_{s - 1})}\beta_{s - 1}

9.正交基及規範正交基

向量空間一組基中的向量若是兩兩正交,就稱爲正交基;若正交基中每一個向量都是單位向量,就稱其爲規範正交基。

線性方程組

1.克萊姆法則

線性方程組\begin{cases}  a_{11}x_{1} + a_{12}x_{2} + \cdots +a_{1n}x_{n} = b_{1} \\   a_{21}x_{1} + a_{22}x_{2} + \cdots + a_{2n}x_{n} =b_{2} \\   \quad\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots \\ a_{n1}x_{1} + a_{n2}x_{2} + \cdots + a_{{nn}}x_{n} = b_{n} \\ \end{cases},若是係數行列式D = \left| A \right| \neq 0,則方程組有惟一解,x_{1} = \frac{D_{1}}{D},x_{2} = \frac{D_{2}}{D},\cdots,x_{n} =\frac{D_{n}}{D},其中D_{j}是把D中第j列元素換成方程組右端的常數列所得的行列式。

2. n階矩陣A可逆\Leftrightarrow Ax = 0只有零解。\Leftrightarrow\forall b,Ax = b總有惟一解,通常地,r(A_{m \times n}) = n \Leftrightarrow Ax= 0只有零解。

3.非奇次線性方程組有解的充分必要條件,線性方程組解的性質和解的結構

(1) 設Am \times n矩陣,若r(A_{m \times n}) = m,則對Ax =b而言必有r(A) = r(A \vdots b) = m,從而Ax = b有解。

(2) 設x_{1},x_{2},\cdots x_{s}Ax = b的解,則k_{1}x_{1} + k_{2}x_{2}\cdots + k_{s}x_{s}k_{1} + k_{2} + \cdots + k_{s} = 1時仍爲Ax =b的解;但當k_{1} + k_{2} + \cdots + k_{s} = 0時,則爲Ax =0的解。特別\frac{x_{1} + x_{2}}{2}Ax = b的解;2x_{3} - (x_{1} +x_{2})Ax = 0的解。

(3) 非齊次線性方程組{Ax} = b無解\Leftrightarrow r(A) + 1 =r(\overline{A}) \Leftrightarrow b不能由A的列向量\alpha_{1},\alpha_{2},\cdots,\alpha_{n}線性表示。

4.奇次線性方程組的基礎解系和通解,解空間,非奇次線性方程組的通解

(1) 齊次方程組{Ax} = 0恆有解(必有零解)。當有非零解時,因爲解向量的任意線性組合還是該齊次方程組的解向量,所以{Ax}= 0的全體解向量構成一個向量空間,稱爲該方程組的解空間,解空間的維數是n - r(A),解空間的一組基稱爲齊次方程組的基礎解系。

(2) \eta_{1},\eta_{2},\cdots,\eta_{t}{Ax} = 0的基礎解系,即:

  1. \eta_{1},\eta_{2},\cdots,\eta_{t}{Ax} = 0的解;

  2. \eta_{1},\eta_{2},\cdots,\eta_{t}線性無關;

  3. {Ax} = 0的任一解均可以由\eta_{1},\eta_{2},\cdots,\eta_{t}線性表出. k_{1}\eta_{1} + k_{2}\eta_{2} + \cdots + k_{t}\eta_{t}{Ax} = 0的通解,其中k_{1},k_{2},\cdots,k_{t}是任意常數。

矩陣的特徵值和特徵向量

1.矩陣的特徵值和特徵向量的概念及性質

(1) 設\lambdaA的一個特徵值,則 {kA},{aA} + {bE},A^{2},A^{m},f(A),A^{T},A^{- 1},A^{*}有一個特徵值分別爲 {kλ},{aλ} + b,\lambda^{2},\lambda^{m},f(\lambda),\lambda,\lambda^{- 1},\frac{|A|}{\lambda},且對應特徵向量相同(A^{T} 例外)。

(2)若\lambda_{1},\lambda_{2},\cdots,\lambda_{n}An個特徵值,則\sum_{i= 1}^{n}\lambda_{i} = \sum_{i = 1}^{n}a_{{ii}},\prod_{i = 1}^{n}\lambda_{i}= |A| ,從而|A| \neq 0 \Leftrightarrow A沒有特徵值。

(3)設\lambda_{1},\lambda_{2},\cdots,\lambda_{s}As個特徵值,對應特徵向量爲\alpha_{1},\alpha_{2},\cdots,\alpha_{s}

若: \alpha = k_{1}\alpha_{1} + k_{2}\alpha_{2} + \cdots + k_{s}\alpha_{s} ,

則: A^{n}\alpha = k_{1}A^{n}\alpha_{1} + k_{2}A^{n}\alpha_{2} + \cdots +k_{s}A^{n}\alpha_{s} = k_{1}\lambda_{1}^{n}\alpha_{1} +k_{2}\lambda_{2}^{n}\alpha_{2} + \cdots k_{s}\lambda_{s}^{n}\alpha_{s}

2.類似變換、類似矩陣的概念及性質

(1) 若A \sim B,則

  1. A^{T} \sim B^{T},A^{- 1} \sim B^{- 1},,A^{*} \sim B^{*}

  2. |A| = |B|,\sum_{i = 1}^{n}A_{{ii}} = \sum_{i =1}^{n}b_{{ii}},r(A) = r(B)

  3. |\lambda E - A| = |\lambda E - B|,對\forall\lambda成立

3.矩陣可類似對角化的充分必要條件

(1)設An階方陣,則A可對角化\Leftrightarrow對每一個k_{i}重根特徵值\lambda_{i},有n-r(\lambda_{i}E - A) = k_{i}

(2) 設A可對角化,則由P^{- 1}{AP} = \Lambda,A = {PΛ}P^{-1},從而A^{n} = P\Lambda^{n}P^{- 1}

(3) 重要結論

  1. A \sim B,C \sim D,則\begin{bmatrix}  A & O \\ O & C \\\end{bmatrix} \sim \begin{bmatrix} B & O \\  O & D \\\end{bmatrix}.

  2. A \sim B,則f(A) \sim f(B),\left| f(A) \right| \sim \left| f(B)\right|,其中f(A)爲關於n階方陣A的多項式。

  3. A爲可對角化矩陣,則其非零特徵值的個數(重根重複計算)=秩(A)

4.實對稱矩陣的特徵值、特徵向量及類似對角陣

(1)類似矩陣:設A,B爲兩個n階方陣,若是存在一個可逆矩陣P,使得B =P^{- 1}{AP}成立,則稱矩陣AB類似,記爲A \sim B

(2)類似矩陣的性質:若是A \sim B則有:

  1. A^{T} \sim B^{T}

  2. A^{- 1} \sim B^{- 1} (若AB都可逆)

  3. A^{k} \sim B^{k}k爲正整數)

  4. \left| {λE} - A \right| = \left| {λE} - B \right|,從而A,B 有相同的特徵值

  5. \left| A \right| = \left| B \right|,從而A,B同時可逆或者不可逆

  6. \left( A \right) =\left( B \right),\left| {λE} - A \right| =\left| {λE} - B \right|A,B不必定類似

二次型

1.\mathbf{n}個變量\mathbf{x}_{\mathbf{1}}\mathbf{,}\mathbf{x}_{\mathbf{2}}\mathbf{,\cdots,}\mathbf{x}_{\mathbf{n}}的二次齊次函數

f(x_{1},x_{2},\cdots,x_{n}) = \sum_{i = 1}^{n}{\sum_{j =1}^{n}{a_{{ij}}x_{i}y_{j}}},其中a_{{ij}} = a_{{ji}}(i,j =1,2,\cdots,n),稱爲n元二次型,簡稱二次型. 若令x = \ \begin{bmatrix}x_{1} \\ x_{1} \\  \vdots \\ x_{n} \\ \end{bmatrix},A = \begin{bmatrix}  a_{11}& a_{12}& \cdots & a_{1n} \\  a_{21}& a_{22}& \cdots & a_{2n} \\ \cdots &\cdots &\cdots &\cdots \\  a_{n1}& a_{n2} & \cdots & a_{{nn}} \\\end{bmatrix},這二次型f可改寫成矩陣向量形式f =x^{T}{Ax}。其中A稱爲二次型矩陣,由於a_{{ij}} =a_{{ji}}(i,j =1,2,\cdots,n),因此二次型矩陣均爲對稱矩陣,且二次型與對稱矩陣一一對應,並把矩陣A的秩稱爲二次型的秩。

2.慣性定理,二次型的標準形和規範形

(1) 慣性定理

對於任一二次型,不論選取怎樣的合同變換使它化爲僅含平方項的標準型,其正負慣性指數與所選變換無關,這就是所謂的慣性定理。

(2) 標準形

二次型f = \left( x_{1},x_{2},\cdots,x_{n} \right) =x^{T}{Ax}通過合同變換x = {Cy}化爲f = x^{T}{Ax} =y^{T}C^{T}{AC}

y = \sum_{i = 1}^{r}{d_{i}y_{i}^{2}}稱爲 f(r \leq n)的標準形。在通常的數域內,二次型的標準形不是惟一的,與所做的合同變換有關,但係數不爲零的平方項的個數由r(A)惟一肯定。

(3) 規範形

任一實二次型f均可通過合同變換化爲規範形f = z_{1}^{2} + z_{2}^{2} + \cdots z_{p}^{2} - z_{p + 1}^{2} - \cdots -z_{r}^{2},其中rA的秩,p爲正慣性指數,r -p爲負慣性指數,且規範型惟一。

3.用正交變換和配方法化二次型爲標準形,二次型及其矩陣的正定性

A正定\Rightarrow {kA}(k > 0),A^{T},A^{- 1},A^{*}正定;|A| >0,A可逆;a_{{ii}} > 0,且|A_{{ii}}| > 0

AB正定\Rightarrow A +B正定,但{AB}{BA}不必定正定

A正定\Leftrightarrow f(x) = x^{T}{Ax} > 0,\forall x \neq 0

\Leftrightarrow A的各階順序主子式全大於零

\Leftrightarrow A的全部特徵值大於零

\Leftrightarrow A的正慣性指數爲n

\Leftrightarrow存在可逆陣P使A = P^{T}P

\Leftrightarrow存在正交矩陣Q,使Q^{T}{AQ} = Q^{- 1}{AQ} =\begin{pmatrix} \lambda_{1} & & \\ \begin{matrix}  & \\  & \\ \end{matrix} &\ddots & \\  & & \lambda_{n} \\ \end{pmatrix},

其中\lambda_{i} > 0,i = 1,2,\cdots,n.正定\Rightarrow {kA}(k >0),A^{T},A^{- 1},A^{*}正定; |A| > 0,A可逆;a_{{ii}} >0,且|A_{{ii}}| > 0

機率論和數理統計

隨機事件和機率

1.事件的關係與運算

(1) 子事件:A \subset B,若A發生,則B發生。

(2) 相等事件:A = B,即A \subset B,且B \subset A

(3) 和事件:A\bigcup B(或A + B),AB中至少有一個發生。

(4) 差事件:A - BA發生但B不發生。

(5) 積事件:A\bigcap B(或{AB}),AB同時發生。

(6) 互斥事件(互不相容):A\bigcap B=\varnothing

(7) 互逆事件(對立事件): A\bigcap B=\varnothing ,A\bigcup B=\Omega ,A=\bar{B},B=\bar{A} 2.運算律 (1) 交換律:A\bigcup B=B\bigcup A,A\bigcap B=B\bigcap A (2) 結合律:(A\bigcup B)\bigcup C=A\bigcup (B\bigcup C) (3) 分配律:(A\bigcap B)\bigcap C=A\bigcap (B\bigcap C) 3.德\centerdot摩根律

\overline{A\bigcup B}=\bar{A}\bigcap \bar{B} \overline{A\bigcap B}=\bar{A}\bigcup \bar{B} 4.徹底事件組

{{A}_{1}}{{A}_{2}}\cdots {{A}_{n}}兩兩互斥,且和事件爲必然事件,即{{A}_{i}}\bigcap {{A}_{j}}=\varnothing, i\ne j ,\underset{i=1}{\overset{n}{\mathop \bigcup }}\,=\Omega

5.機率的基本公式 (1)條件機率: P(B|A)=\frac{P(AB)}{P(A)},表示A發生的條件下,B發生的機率。 (2)全機率公式: P(A)=\sum\limits_{i=1}^{n}{P(A|{{B}_{i}})P({{B}_{i}}),{{B}_{i}}{{B}_{j}}}=\varnothing ,i\ne j,\underset{i=1}{\overset{n}{\mathop{\bigcup }}}\,{{B}_{i}}=\Omega (3) Bayes公式:

P({{B}_{j}}|A)=\frac{P(A|{{B}_{j}})P({{B}_{j}})}{\sum\limits_{i=1}^{n}{P(A|{{B}_{i}})P({{B}_{i}})}},j=1,2,\cdots ,n 注:上述公式中事件{{B}_{i}}的個數可爲可列個。 (4)乘法公式: P({{A}_{1}}{{A}_{2}})=P({{A}_{1}})P({{A}_{2}}|{{A}_{1}})=P({{A}_{2}})P({{A}_{1}}|{{A}_{2}}) P({{A}_{1}}{{A}_{2}}\cdots {{A}_{n}})=P({{A}_{1}})P({{A}_{2}}|{{A}_{1}})P({{A}_{3}}|{{A}_{1}}{{A}_{2}})\cdots P({{A}_{n}}|{{A}_{1}}{{A}_{2}}\cdots {{A}_{n-1}})

6.事件的獨立性 (1)AB相互獨立\Leftrightarrow P(AB)=P(A)P(B) (2)ABC兩兩獨立 \Leftrightarrow P(AB)=P(A)P(B);P(BC)=P(B)P(C) ;P(AC)=P(A)P(C); (3)ABC相互獨立 \Leftrightarrow P(AB)=P(A)P(B); P(BC)=P(B)P(C) ; P(AC)=P(A)P(C) ; P(ABC)=P(A)P(B)P(C)

7.獨立重複試驗

將某試驗獨立重複n次,若每次實驗中事件A發生的機率爲p,則n次試驗中A發生k次的機率爲: P(X=k)=C_{n}^{k}{{p}^{k}}{{(1-p)}^{n-k}} 8.重要公式與結論 (1)P(\bar{A})=1-P(A) (2)P(A\bigcup B)=P(A)+P(B)-P(AB) P(A\bigcup B\bigcup C)=P(A)+P(B)+P(C)-P(AB)-P(BC)-P(AC)+P(ABC) (3)P(A-B)=P(A)-P(AB) (4)P(A\bar{B})=P(A)-P(AB),P(A)=P(AB)+P(A\bar{B}), P(A\bigcup B)=P(A)+P(\bar{A}B)=P(AB)+P(A\bar{B})+P(\bar{A}B) (5)條件機率P(\centerdot |B)知足機率的全部性質, 例如:. P({{\bar{A}}_{1}}|B)=1-P({{A}_{1}}|B) P({{A}_{1}}\bigcup {{A}_{2}}|B)=P({{A}_{1}}|B)+P({{A}_{2}}|B)-P({{A}_{1}}{{A}_{2}}|B) P({{A}_{1}}{{A}_{2}}|B)=P({{A}_{1}}|B)P({{A}_{2}}|{{A}_{1}}B) (6)若{{A}_{1}},{{A}_{2}},\cdots ,{{A}_{n}}相互獨立,則P(\bigcap\limits_{i=1}^{n}{{{A}_{i}}})=\prod\limits_{i=1}^{n}{P({{A}_{i}})}, P(\bigcup\limits_{i=1}^{n}{{{A}_{i}}})=\prod\limits_{i=1}^{n}{(1-P({{A}_{i}}))} (7)互斥、互逆與獨立性之間的關係: AB互逆\Rightarrow AB互斥,但反之不成立,AB互斥(或互逆)且均非零機率事件\RightarrowAB不獨立. (8)若{{A}_{1}},{{A}_{2}},\cdots ,{{A}_{m}},{{B}_{1}},{{B}_{2}},\cdots ,{{B}_{n}}相互獨立,則f({{A}_{1}},{{A}_{2}},\cdots ,{{A}_{m}})g({{B}_{1}},{{B}_{2}},\cdots ,{{B}_{n}})也相互獨立,其中f(\centerdot ),g(\centerdot )分別表示對相應事件作任意事件運算後所得的事件,另外,機率爲1(或0)的事件與任何事件相互獨立.

隨機變量及其機率分佈

1.隨機變量及機率分佈

取值帶有隨機性的變量,嚴格地說是定義在樣本空間上,取值於實數的函數稱爲隨機變量,機率分佈一般指分佈函數或分佈律

2.分佈函數的概念與性質

定義: F(x) = P(X \leq x), - \infty < x < + \infty

性質:(1)0 \leq F(x) \leq 1

(2) F(x)單調不減

(3) 右連續F(x + 0) = F(x)

(4) F( - \infty) = 0,F( + \infty) = 1

3.離散型隨機變量的機率分佈

P(X = x_{i}) = p_{i},i = 1,2,\cdots,n,\cdots\quad\quad p_{i} \geq 0,\sum_{i =1}^{\infty}p_{i} = 1

4.連續型隨機變量的機率密度

機率密度f(x);非負可積,且:

(1)f(x) \geq 0,

(2)\int_{- \infty}^{+\infty}{f(x){dx} = 1}

(3)xf(x)的連續點,則:

f(x) = F'(x)分佈函數F(x) = \int_{- \infty}^{x}{f(t){dt}}

5.常見分佈

(1) 0-1分佈:P(X = k) = p^{k}{(1 - p)}^{1 - k},k = 0,1

(2) 二項分佈:B(n,p)P(X = k) = C_{n}^{k}p^{k}{(1 - p)}^{n - k},k =0,1,\cdots,n

(3) Poisson分佈:p(\lambda)P(X = k) = \frac{\lambda^{k}}{k!}e^{-\lambda},\lambda > 0,k = 0,1,2\cdots

(4) 均勻分佈U(a,b)f(x) = \{ \begin{matrix}  & \frac{1}{b - a},a < x< b \\  & 0, \\ \end{matrix}

(5) 正態分佈:N(\mu,\sigma^{2}): \varphi(x) =\frac{1}{\sqrt{2\pi}\sigma}e^{- \frac{{(x - \mu)}^{2}}{2\sigma^{2}}},\sigma > 0,\infty < x < + \infty

(6)指數分佈:E(\lambda):f(x) =\{ \begin{matrix}  & \lambda e^{-{λx}},x > 0,\lambda > 0 \\  & 0, \\ \end{matrix}

(7)幾何分佈:G(p):P(X = k) = {(1 - p)}^{k - 1}p,0 < p < 1,k = 1,2,\cdots.

(8)超幾何分佈: H(N,M,n):P(X = k) = \frac{C_{M}^{k}C_{N - M}^{n -k}}{C_{N}^{n}},k =0,1,\cdots,min(n,M)

6.隨機變量函數的機率分佈

(1)離散型:P(X = x_{1}) = p_{i},Y = g(X)

則: P(Y = y_{j}) = \sum_{g(x_{i}) = y_{i}}^{}{P(X = x_{i})}

(2)連續型:X\tilde{\ }f_{X}(x),Y = g(x)

則:F_{y}(y) = P(Y \leq y) = P(g(X) \leq y) = \int_{g(x) \leq y}^{}{f_{x}(x)dx}f_{Y}(y) = F'_{Y}(y)

7.重要公式與結論

(1) X\sim N(0,1) \Rightarrow \varphi(0) = \frac{1}{\sqrt{2\pi}},\Phi(0) =\frac{1}{2}, \Phi( - a) = P(X \leq - a) = 1 - \Phi(a)

(2) X\sim N\left( \mu,\sigma^{2} \right) \Rightarrow \frac{X -\mu}{\sigma}\sim N\left( 0,1 \right),P(X \leq a) = \Phi(\frac{a -\mu}{\sigma})

(3) X\sim E(\lambda) \Rightarrow P(X > s + t|X > s) = P(X > t)

(4) X\sim G(p) \Rightarrow P(X = m + k|X > m) = P(X = k)

(5) 離散型隨機變量的分佈函數爲階梯間斷函數;連續型隨機變量的分佈函數爲連續函數,但不必定爲到處可導函數。

(6) 存在既非離散也非連續型隨機變量。

多維隨機變量及其分佈

1.二維隨機變量及其聯合分佈

由兩個隨機變量構成的隨機向量(X,Y), 聯合分佈爲F(x,y) = P(X \leq x,Y \leq y)

2.二維離散型隨機變量的分佈

(1) 聯合機率分佈律 P\{ X = x_{i},Y = y_{j}\} = p_{{ij}};i,j =1,2,\cdots

(2) 邊緣分佈律 p_{i \cdot} = \sum_{j = 1}^{\infty}p_{{ij}},i =1,2,\cdots p_{\cdot j} = \sum_{i}^{\infty}p_{{ij}},j = 1,2,\cdots

(3) 條件分佈律 P\{ X = x_{i}|Y = y_{j}\} = \frac{p_{{ij}}}{p_{\cdot j}} P\{ Y = y_{j}|X = x_{i}\} = \frac{p_{{ij}}}{p_{i \cdot}}

3. 二維連續性隨機變量的密度

(1) 聯合機率密度f(x,y):

  1. f(x,y) \geq 0

  2. \int_{- \infty}^{+ \infty}{\int_{- \infty}^{+ \infty}{f(x,y)dxdy}} = 1

(2) 分佈函數:F(x,y) = \int_{- \infty}^{x}{\int_{- \infty}^{y}{f(u,v)dudv}}

(3) 邊緣機率密度: f_{X}\left( x \right) = \int_{- \infty}^{+ \infty}{f\left( x,y \right){dy}} f_{Y}(y) = \int_{- \infty}^{+ \infty}{f(x,y)dx}

(4) 條件機率密度:f_{X|Y}\left( x \middle| y \right) = \frac{f\left( x,y \right)}{f_{Y}\left( y \right)} f_{Y|X}(y|x) = \frac{f(x,y)}{f_{X}(x)}

4.常見二維隨機變量的聯合分佈

(1) 二維均勻分佈:(x,y) \sim U(D) ,f(x,y) = \begin{cases} \frac{1}{S(D)},(x,y) \in D \\   0,其餘  \end{cases}

(2) 二維正態分佈:(X,Y)\sim N(\mu_{1},\mu_{2},\sigma_{1}^{2},\sigma_{2}^{2},\rho),(X,Y)\sim N(\mu_{1},\mu_{2},\sigma_{1}^{2},\sigma_{2}^{2},\rho)

f(x,y) = \frac{1}{2\pi\sigma_{1}\sigma_{2}\sqrt{1 - \rho^{2}}}.\exp\left\{ \frac{- 1}{2(1 - \rho^{2})}\lbrack\frac{{(x - \mu_{1})}^{2}}{\sigma_{1}^{2}} - 2\rho\frac{(x - \mu_{1})(y - \mu_{2})}{\sigma_{1}\sigma_{2}} + \frac{{(y - \mu_{2})}^{2}}{\sigma_{2}^{2}}\rbrack \right\}

5.隨機變量的獨立性和相關性

XY的相互獨立:\Leftrightarrow F\left( x,y \right) = F_{X}\left( x \right)F_{Y}\left( y \right):

\Leftrightarrow p_{{ij}} = p_{i \cdot} \cdot p_{\cdot j}(離散型) \Leftrightarrow f\left( x,y \right) = f_{X}\left( x \right)f_{Y}\left( y \right)(連續型)

XY的相關性:

相關係數\rho_{{XY}} = 0時,稱XY不相關, 不然稱XY相關

6.兩個隨機變量簡單函數的機率分佈

離散型: P\left( X = x_{i},Y = y_{i} \right) = p_{{ij}},Z = g\left( X,Y \right) 則:

P(Z = z_{k}) = P\left\{ g\left( X,Y \right) = z_{k} \right\} = \sum_{g\left( x_{i},y_{i} \right) = z_{k}}^{}{P\left( X = x_{i},Y = y_{j} \right)}

連續型: \left( X,Y \right) \sim f\left( x,y \right),Z = g\left( X,Y \right) 則:

F_{z}\left( z \right) = P\left\{ g\left( X,Y \right) \leq z \right\} = \iint_{g(x,y) \leq z}^{}{f(x,y)dxdy}f_{z}(z) = F'_{z}(z)

7.重要公式與結論

(1) 邊緣密度公式: f_{X}(x) = \int_{- \infty}^{+ \infty}{f(x,y)dy,} f_{Y}(y) = \int_{- \infty}^{+ \infty}{f(x,y)dx}

(2) P\left\{ \left( X,Y \right) \in D \right\} = \iint_{D}^{}{f\left( x,y \right){dxdy}}

(3) 若(X,Y)服從二維正態分佈N(\mu_{1},\mu_{2},\sigma_{1}^{2},\sigma_{2}^{2},\rho) 則有:

  1. X\sim N\left( \mu_{1},\sigma_{1}^{2} \right),Y\sim N(\mu_{2},\sigma_{2}^{2}).

  2. XY相互獨立\Leftrightarrow \rho = 0,即XY不相關。

  3. C_{1}X + C_{2}Y\sim N(C_{1}\mu_{1} + C_{2}\mu_{2},C_{1}^{2}\sigma_{1}^{2} + C_{2}^{2}\sigma_{2}^{2} + 2C_{1}C_{2}\sigma_{1}\sigma_{2}\rho)

  4. {\ X}關於Y=y的條件分佈爲: N(\mu_{1} + \rho\frac{\sigma_{1}}{\sigma_{2}}(y - \mu_{2}),\sigma_{1}^{2}(1 - \rho^{2}))

  5. Y關於X = x的條件分佈爲: N(\mu_{2} + \rho\frac{\sigma_{2}}{\sigma_{1}}(x - \mu_{1}),\sigma_{2}^{2}(1 - \rho^{2}))

(4) 若XY獨立,且分別服從N(\mu_{1},\sigma_{1}^{2}),N(\mu_{1},\sigma_{2}^{2}), 則:\left( X,Y \right)\sim N(\mu_{1},\mu_{2},\sigma_{1}^{2},\sigma_{2}^{2},0),

C_{1}X + C_{2}Y\tilde{\ }N(C_{1}\mu_{1} + C_{2}\mu_{2},C_{1}^{2}\sigma_{1}^{2} C_{2}^{2}\sigma_{2}^{2}).

(5) 若XY相互獨立,f\left( x \right)g\left( x \right)爲連續函數, 則f\left( X \right)g(Y)也相互獨立。

隨機變量的數字特徵

1.數學指望

離散型:P\left\{ X = x_{i} \right\} = p_{i},E(X) = \sum_{i}^{}{x_{i}p_{i}}

連續型: X\sim f(x),E(X) = \int_{- \infty}^{+ \infty}{xf(x)dx}

性質:

(1) E(C) = C,E\lbrack E(X)\rbrack = E(X)

(2) E(C_{1}X + C_{2}Y) = C_{1}E(X) + C_{2}E(Y)

(3) 若XY獨立,則E(XY) = E(X)E(Y)

(4)\left\lbrack E(XY) \right\rbrack^{2} \leq E(X^{2})E(Y^{2})

2.方差D(X) = E\left\lbrack X - E(X) \right\rbrack^{2} = E(X^{2}) - \left\lbrack E(X) \right\rbrack^{2}

3.標準差\sqrt{D(X)}

4.離散型:D(X) = \sum_{i}^{}{\left\lbrack x_{i} - E(X) \right\rbrack^{2}p_{i}}

5.連續型:D(X) = {\int_{- \infty}^{+ \infty}\left\lbrack x - E(X) \right\rbrack}^{2}f(x)dx

性質:

(1)\ D(C) = 0,D\lbrack E(X)\rbrack = 0,D\lbrack D(X)\rbrack = 0

(2) XY相互獨立,則D(X \pm Y) = D(X) + D(Y)

(3)\ D\left( C_{1}X + C_{2} \right) = C_{1}^{2}D\left( X \right)

(4) 通常有 D(X \pm Y) = D(X) + D(Y) \pm 2Cov(X,Y) = D(X) + D(Y) \pm 2\rho\sqrt{D(X)}\sqrt{D(Y)}

(5)\ D\left( X \right) < E\left( X - C \right)^{2},C \neq E\left( X \right)

(6)\ D(X) = 0 \Leftrightarrow P\left\{ X = C \right\} = 1

6.隨機變量函數的數學指望

(1) 對於函數Y = g(x)

X爲離散型:P\{ X = x_{i}\} = p_{i},E(Y) = \sum_{i}^{}{g(x_{i})p_{i}}

X爲連續型:X\sim f(x),E(Y) = \int_{- \infty}^{+ \infty}{g(x)f(x)dx}

(2) Z = g(X,Y);\left( X,Y \right)\sim P\{ X = x_{i},Y = y_{j}\} = p_{{ij}}; E(Z) = \sum_{i}^{}{\sum_{j}^{}{g(x_{i},y_{j})p_{{ij}}}} \left( X,Y \right)\sim f(x,y);E(Z) = \int_{- \infty}^{+ \infty}{\int_{- \infty}^{+ \infty}{g(x,y)f(x,y)dxdy}}

7.協方差

Cov(X,Y) = E\left\lbrack (X - E(X)(Y - E(Y)) \right\rbrack

8.相關係數

\rho_{{XY}} = \frac{Cov(X,Y)}{\sqrt{D(X)}\sqrt{D(Y)}},k階原點矩 E(X^{k}); k階中心矩 E\left\{ {\lbrack X - E(X)\rbrack}^{k} \right\}

性質:

(1)\ Cov(X,Y) = Cov(Y,X)

(2)\ Cov(aX,bY) = abCov(Y,X)

(3)\ Cov(X_{1} + X_{2},Y) = Cov(X_{1},Y) + Cov(X_{2},Y)

(4)\ \left| \rho\left( X,Y \right) \right| \leq 1

(5) \ \rho\left( X,Y \right) = 1 \Leftrightarrow P\left( Y = aX + b \right) = 1 ,其中a > 0

\rho\left( X,Y \right) = - 1 \Leftrightarrow P\left( Y = aX + b \right) = 1 ,其中a < 0

9.重要公式與結論

(1)\ D(X) = E(X^{2}) - E^{2}(X)

(2)\ Cov(X,Y) = E(XY) - E(X)E(Y)

(3) \left| \rho\left( X,Y \right) \right| \leq 1,\rho\left( X,Y \right) = 1 \Leftrightarrow P\left( Y = aX + b \right) = 1,其中a > 0

\rho\left( X,Y \right) = - 1 \Leftrightarrow P\left( Y = aX + b \right) = 1,其中a < 0

(4) 下面5個條件互爲充要條件:

\rho(X,Y) = 0 \Leftrightarrow Cov(X,Y) = 0 \Leftrightarrow E(X,Y) = E(X)E(Y) \Leftrightarrow D(X + Y) = D(X) + D(Y) \Leftrightarrow  D(X - Y) = D(X) + D(Y)

注:XY獨立爲上述5個條件中任何一個成立的充分條件,但非必要條件。

數理統計的基本概念

1.基本概念

整體:研究對象的全體,它是一個隨機變量,用X表示。

個體:組成整體的每一個基本元素。

簡單隨機樣本:來自整體Xn個相互獨立且與整體同分布的隨機變量X_{1},X_{2}\cdots,X_{n},稱爲容量爲n的簡單隨機樣本,簡稱樣本。

統計量:設X_{1},X_{2}\cdots,X_{n},是來自整體X的一個樣本,g(X_{1},X_{2}\cdots,X_{n}))是樣本的連續函數,且g()中不含任何未知參數,則稱g(X_{1},X_{2}\cdots,X_{n})爲統計量。

樣本均值:\overline{X} = \frac{1}{n}\sum_{i = 1}^{n}X_{i}

樣本方差:S^{2} = \frac{1}{n - 1}\sum_{i = 1}^{n}{(X_{i} - \overline{X})}^{2}

樣本矩:樣本k階原點矩:A_{k} = \frac{1}{n}\sum_{i = 1}^{n}X_{i}^{k},k = 1,2,\cdots

樣本k階中心矩:B_{k} = \frac{1}{n}\sum_{i = 1}^{n}{(X_{i} - \overline{X})}^{k},k = 1,2,\cdots

2.分佈

\chi^{2}分佈:\chi^{2} = X_{1}^{2} + X_{2}^{2} + \cdots + X_{n}^{2}\sim\chi^{2}(n),其中X_{1},X_{2}\cdots,X_{n},相互獨立,且同服從N(0,1)

t分佈:T = \frac{X}{\sqrt{Y/n}}\sim t(n) ,其中X\sim N\left( 0,1 \right),Y\sim\chi^{2}(n),XY 相互獨立。

F分佈:F = \frac{X/n_{1}}{Y/n_{2}}\sim F(n_{1},n_{2}),其中X\sim\chi^{2}\left( n_{1} \right),Y\sim\chi^{2}(n_{2}),XY相互獨立。

分位數:若P(X \leq x_{\alpha}) = \alpha,則稱x_{\alpha}X\alpha分位數

3.正態整體的經常使用樣本分佈

(1) 設X_{1},X_{2}\cdots,X_{n}爲來自正態整體N(\mu,\sigma^{2})的樣本,

\overline{X} = \frac{1}{n}\sum_{i = 1}^{n}X_{i},S^{2} = \frac{1}{n - 1}\sum_{i = 1}^{n}{{(X_{i} - \overline{X})}^{2},}則:

  1. \overline{X}\sim N\left( \mu,\frac{\sigma^{2}}{n} \right){\ \ }或者\frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}}\sim N(0,1)

  2. \frac{(n - 1)S^{2}}{\sigma^{2}} = \frac{1}{\sigma^{2}}\sum_{i = 1}^{n}{{(X_{i} - \overline{X})}^{2}\sim\chi^{2}(n - 1)}

  3. \frac{1}{\sigma^{2}}\sum_{i = 1}^{n}{{(X_{i} - \mu)}^{2}\sim\chi^{2}(n)}

4){\ \ }\frac{\overline{X} - \mu}{S/\sqrt{n}}\sim t(n - 1)

4.重要公式與結論

(1) 對於\chi^{2}\sim\chi^{2}(n),有E(\chi^{2}(n)) = n,D(\chi^{2}(n)) = 2n;

(2) 對於T\sim t(n),有E(T) = 0,D(T) = \frac{n}{n - 2}(n > 2)

(3) 對於F\tilde{\ }F(m,n),有 \frac{1}{F}\sim F(n,m),F_{a/2}(m,n) = \frac{1}{F_{1 - a/2}(n,m)};

(4) 對於任意整體X,有 E(\overline{X}) = E(X),E(S^{2}) = D(X),D(\overline{X}) = \frac{D(X)}{n}

原文:www.ai-start.com/dl2017/html…

相關文章
相關標籤/搜索