JavaShuo
欄目
標籤
CVPR2020--ATSS: Adaptive Training Sample Selection
時間 2020-12-30
標籤
學習生活
深度學習
目標檢測
欄目
悠閒生活
简体版
原文
原文鏈接
Bridging the Gap Between Anchor-based and Anchor-free Detection via Adaptive Training Sample Selection ATSS爲CVPR2020中的一篇論文,論文題目如上所示,大體意思爲通過自適應選擇訓練樣本來彌補基於錨和無錨檢測器的差距。因爲目前大多數目標檢測成果都是在anchor-based的基礎上產生的,
>>阅读原文<<
相關文章
1.
AdaptIS: Adaptive Instance Selection Network
2.
Adaptive Reference Sample Smoothing(RSAF)
3.
論文筆記:目標檢測正負樣本劃分方法Adaptive Training Sample Selection (ATSS)原理
4.
目標檢測論文: Bridging the Gap Between Anchor-based and Anchor-free Detection via Adaptive Training Sample
5.
【論文筆記】HSIC WIth Small Training Sample Size Using Superpixel-Guided Training Sample Enlargement
6.
[目標檢測]Bridging the Gap Between Anchor-based and Anchor-free Detection via Adaptive Training Sample S
7.
Hyperspectral Band Selection via Adaptive Subspace Partition Strategy
8.
[Converge] Feature Selection in training of Deep Learning
9.
MetaSelector: Meta-Learning for Recommendation with User-Level Adaptive Model Selection 走讀
10.
Machine Learning Course 4 Selection of Model
更多相關文章...
•
Docker 容器連接
-
Docker教程
•
PHP headers_list() 函數
-
PHP參考手冊
•
RxJava操作符(三)Filtering
相關標籤/搜索
adaptive
selection
sample
training
flink training
tensorrt&sample&python
悠閒生活
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
JDK JRE JVM,JDK卸載與安裝
2.
Unity NavMeshComponents 學習小結
3.
Unity技術分享連載(64)|Shader Variant Collection|Material.SetPassFast
4.
爲什麼那麼多人用「ji32k7au4a83」作密碼?
5.
關於Vigenere爆0總結
6.
圖論算法之最小生成樹(Krim、Kruskal)
7.
最小生成樹 簡單入門
8.
POJ 3165 Traveling Trio 筆記
9.
你的快遞最遠去到哪裏呢
10.
雲徙探險中臺賽道:借道雲原生,尋找「最優路線」
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
AdaptIS: Adaptive Instance Selection Network
2.
Adaptive Reference Sample Smoothing(RSAF)
3.
論文筆記:目標檢測正負樣本劃分方法Adaptive Training Sample Selection (ATSS)原理
4.
目標檢測論文: Bridging the Gap Between Anchor-based and Anchor-free Detection via Adaptive Training Sample
5.
【論文筆記】HSIC WIth Small Training Sample Size Using Superpixel-Guided Training Sample Enlargement
6.
[目標檢測]Bridging the Gap Between Anchor-based and Anchor-free Detection via Adaptive Training Sample S
7.
Hyperspectral Band Selection via Adaptive Subspace Partition Strategy
8.
[Converge] Feature Selection in training of Deep Learning
9.
MetaSelector: Meta-Learning for Recommendation with User-Level Adaptive Model Selection 走讀
10.
Machine Learning Course 4 Selection of Model
>>更多相關文章<<