gluoncv,faster rcnn 處理難樣本

難樣本,是咱們在標註的時候,連肉眼都看不清的小像素物體,也能夠說是既不是正樣本,也不是負樣本。git

利用gluoncv時,這些標註框也實在存在,gluoncv會實在將他當作一個GT,但咱們知道這是很差的。因而,咱們在標註的時候,給他一個屬性,他是一個難樣本。以前用過lst文件訓練本身的數據集,這裏的Lst文件須要改一下格式;github

這裏的B就是6了,包括id,xmin,ymin,xmax,ymax,hard_flag,能夠本身寫,結構相似便可。網絡

Faster rcnn:app

https://github.com/dmlc/gluon-cv/blob/master/scripts/detection/faster_rcnn/train_faster_rcnn.py#L313less

從這個大epoch裏面,咱們能夠知道,將咱們的難樣本屬性應該在train_data以前就弄好了。dom

也是就是說在:ide

from gluoncv.data.transforms.presets.rcnn import FasterRCNNDefaultTrainTransform
from gluoncv.data.transforms.presets.rcnn import FasterRCNNDefaultValTransform

這兩個變化裏,注意import方式,pip 進來就修改site-package裏面的文件。spa

class FasterRCNNDefaultTrainTransform(object):
    """Default Faster-RCNN training transform.

    Parameters
    ----------
    short : int, default is 600
        Resize image shorter side to ``short``.
    max_size : int, default is 1000
        Make sure image longer side is smaller than ``max_size``.
    net : mxnet.gluon.HybridBlock, optional
        The faster-rcnn network.

        .. hint::

            If net is ``None``, the transformation will not generate training targets.
            Otherwise it will generate training targets to accelerate the training phase
            since we push some workload to CPU workers instead of GPUs.

    mean : array-like of size 3
        Mean pixel values to be subtracted from image tensor. Default is [0.485, 0.456, 0.406].
    std : array-like of size 3
        Standard deviation to be divided from image. Default is [0.229, 0.224, 0.225].
    box_norm : array-like of size 4, default is (1., 1., 1., 1.)
        Std value to be divided from encoded values.
    num_sample : int, default is 256
        Number of samples for RPN targets.
    pos_iou_thresh : float, default is 0.7
        Anchors larger than ``pos_iou_thresh`` is regarded as positive samples.
    neg_iou_thresh : float, default is 0.3
        Anchors smaller than ``neg_iou_thresh`` is regarded as negative samples.
        Anchors with IOU in between ``pos_iou_thresh`` and ``neg_iou_thresh`` are
        ignored.
    pos_ratio : float, default is 0.5
        ``pos_ratio`` defines how many positive samples (``pos_ratio * num_sample``) is
        to be sampled.

    """
def __init__(self, short=600, max_size=1000, net=None, mean=(0.485, 0.456, 0.406),
                 std=(0.229, 0.224, 0.225), box_norm=(1., 1., 1., 1.),
                 num_sample=256, pos_iou_thresh=0.7, neg_iou_thresh=0.3,
                 pos_ratio=0.5, **kwargs):
        self._short = short
        self._max_size = max_size
        self._mean = mean
        self._std = std
        self._anchors = None
        if net is None:
            return

        # use fake data to generate fixed anchors for target generation
        ashape = 128
        # in case network has reset_ctx to gpu
        anchor_generator = copy.deepcopy(net.rpn.anchor_generator)
        anchor_generator.collect_params().reset_ctx(None)
        anchors = anchor_generator(
            mx.nd.zeros((1, 3, ashape, ashape))).reshape((1, 1, ashape, ashape, -1))
        self._anchors = anchors
        # record feature extractor for infer_shape
        if not hasattr(net, 'features'):
            raise ValueError("Cannot find features in network, it is a Faster-RCNN network?")
        self._feat_sym = net.features(mx.sym.var(name='data'))
        from ....model_zoo.rpn.rpn_target import RPNTargetGenerator
        self._target_generator = RPNTargetGenerator(
            num_sample=num_sample, pos_iou_thresh=pos_iou_thresh,
            neg_iou_thresh=neg_iou_thresh, pos_ratio=pos_ratio,
            stds=box_norm, **kwargs)

    def __call__(self, src, label):
        """Apply transform to training image/label."""
        # resize shorter side but keep in max_size
        h, w, _ = src.shape
        img = timage.resize_short_within(src, self._short, self._max_size, interp=1)
        bbox = tbbox.resize(label, (w, h), (img.shape[1], img.shape[0]))

        # random horizontal flip
        h, w, _ = img.shape
        img, flips = timage.random_flip(img, px=0.5)
        bbox = tbbox.flip(bbox, (w, h), flip_x=flips[0])

        # to tensor
        img = mx.nd.image.to_tensor(img)
        img = mx.nd.image.normalize(img, mean=self._mean, std=self._std)

        if self._anchors is None:
            return img, bbox.astype(img.dtype)
#       print 'xxxxxxxxxxxxxxxxxxxxxxxxxxxxlabal',label.shape
#       print label[:,5]
        # generate RPN target so cpu workers can help reduce the workload
        # feat_h, feat_w = (img.shape[1] // self._stride, img.shape[2] // self._stride)
        oshape = self._feat_sym.infer_shape(data=(1, 3, img.shape[1], img.shape[2]))[1][0]
        anchor = self._anchors[:, :, :oshape[2], :oshape[3], :].reshape((-1, 4))
        gt_bboxes = mx.nd.array(bbox[:, :4])
        cls_target, box_target, box_mask = self._target_generator(
            gt_bboxes, anchor, img.shape[2], img.shape[1],label[:,5])
        return img, bbox.astype(img.dtype), cls_target, box_target, box_mask

能夠檢查一下這裏的label的結構,和咱們修改的同樣code

咱們能夠知道rpn處生成target的部分就是.target_generator,他是orm

from ....model_zoo.rpn.rpn_target import RPNTargetGenerator

添加上咱們難樣本屬性label[:,5]

過來的,因而找到那裏;

class RPNTargetGenerator(gluon.Block):
    """RPN target generator network.

    Parameters
    ----------
    num_sample : int, default is 256
        Number of samples for RPN targets.
    pos_iou_thresh : float, default is 0.7
        Anchor with IOU larger than ``pos_iou_thresh`` is regarded as positive samples.
    neg_iou_thresh : float, default is 0.3
        Anchor with IOU smaller than ``neg_iou_thresh`` is regarded as negative samples.
        Anchors with IOU in between ``pos_iou_thresh`` and ``neg_iou_thresh`` are
        ignored.
    pos_ratio : float, default is 0.5
        ``pos_ratio`` defines how many positive samples (``pos_ratio * num_sample``) is
        to be sampled.
    stds : array-like of size 4, default is (1., 1., 1., 1.)
        Std value to be divided from encoded regression targets.
    allowed_border : int or float, default is 0
        The allowed distance of anchors which are off the image border. This is used to clip out of
        border anchors. You can set it to very large value to keep all anchors.

    """
    def __init__(self, num_sample=256, pos_iou_thresh=0.7, neg_iou_thresh=0.3,
                 pos_ratio=0.5, stds=(1., 1., 1., 1.), allowed_border=0):
        super(RPNTargetGenerator, self).__init__()
        self._num_sample = num_sample
        self._pos_iou_thresh = pos_iou_thresh
        self._neg_iou_thresh = neg_iou_thresh
        self._pos_ratio = pos_ratio
        self._allowed_border = allowed_border
        self._bbox_split = BBoxSplit(axis=-1)
        self._sampler = RPNTargetSampler(num_sample, pos_iou_thresh, neg_iou_thresh, pos_ratio)
        self._cls_encoder = SigmoidClassEncoder()
        self._box_encoder = NormalizedBoxCenterEncoder(stds=stds)

    # pylint: disable=arguments-differ
    def forward(self, bbox, anchor, width, height,hard_label):
        """
        RPNTargetGenerator is only used in data transform with no batch dimension.
        Be careful there's numpy operations inside

        Parameters
        ----------
        bbox: (M, 4) ground truth boxes with corner encoding.
        anchor: (N, 4) anchor boxes with corner encoding.
        width: int width of input image
        height: int height of input image

        Returns
        -------
        cls_target: (N,) value +1: pos, 0: neg, -1: ignore
        box_target: (N, 4) only anchors whose cls_target > 0 has nonzero box target
        box_mask: (N, 4) only anchors whose cls_target > 0 has nonzero mask

        """
        F = mx.nd
        with autograd.pause():
            # calculate ious between (N, 4) anchors and (M, 4) bbox ground-truths
            # ious is (N, M)
            ious = mx.nd.contrib.box_iou(anchor, bbox, format='corner')
            N, M = ious.shape
           # print '------------------ious.shape',ious.shape
           # print ious[0:5,]
#           print M==hard_label.size
            # mask out invalid anchors, (N, 4)
            a_xmin, a_ymin, a_xmax, a_ymax = F.split(anchor, num_outputs=4, axis=-1)
            invalid_mask = (a_xmin < 0) + (a_ymin < 0) + (a_xmax >= width) + (a_ymax >= height)
            invalid_mask = F.repeat(invalid_mask, repeats=bbox.shape[0], axis=-1)
            ious = F.where(invalid_mask, mx.nd.ones_like(ious) * -1, ious)

            samples, matches = self._sampler(ious,hard_label)

            # training targets for RPN
            cls_target, _ = self._cls_encoder(samples)
            box_target, box_mask = self._box_encoder(
                samples.expand_dims(axis=0), matches.expand_dims(0),
                anchor.expand_dims(axis=0), bbox.expand_dims(0))
        return cls_target, box_target[0], box_mask[0]

能夠看到生成sample的地方就是self._sampler,它是

self._sampler = RPNTargetSampler(num_sample, pos_iou_thresh, neg_iou_thresh, pos_ratio)

添加本身的屬性hard_label,找到那裏(同一個文件裏):

class RPNTargetSampler(gluon.Block):
    """A sampler to choose positive/negative samples from RPN anchors

    Parameters
    ----------
    num_sample : int
        Number of samples for RCNN targets.
    pos_iou_thresh : float
        Proposal whose IOU larger than ``pos_iou_thresh`` is regarded as positive samples.
    neg_iou_thresh : float
        Proposal whose IOU smaller than ``neg_iou_thresh`` is regarded as negative samples.
    pos_ratio : float
        ``pos_ratio`` defines how many positive samples (``pos_ratio * num_sample``) is
        to be sampled.

    """
    def __init__(self, num_sample, pos_iou_thresh, neg_iou_thresh, pos_ratio):
        super(RPNTargetSampler, self).__init__()
        self._num_sample = num_sample
        self._max_pos = int(round(num_sample * pos_ratio))
        self._pos_iou_thresh = pos_iou_thresh
        self._neg_iou_thresh = neg_iou_thresh
        self._eps = np.spacing(np.float32(1.0))

    # pylint: disable=arguments-differ
    def forward(self, ious,hard_label):
        """RPNTargetSampler is only used in data transform with no batch dimension.

        Parameters
        ----------
        ious: (N, M) i.e. (num_anchors, num_gt).

        Returns
        -------
        samples: (num_anchors,) value 1: pos, -1: neg, 0: ignore.
        matches: (num_anchors,) value [0, M).

        """
        for i,hard in enumerate(hard_label):
                if hard == 1.0:
                        ious[:,i] = 0.5

        matches = mx.nd.argmax(ious, axis=1)

        # samples init with 0 (ignore)
        ious_max_per_anchor = mx.nd.max(ious, axis=1)
        samples = mx.nd.zeros_like(ious_max_per_anchor)

        # set argmax (1, num_gt)
        ious_max_per_gt = mx.nd.max(ious, axis=0, keepdims=True)
        # ious (num_anchor, num_gt) >= argmax (1, num_gt) -> mark row as positive
        mask = mx.nd.broadcast_greater(ious + self._eps, ious_max_per_gt)
        # reduce column (num_anchor, num_gt) -> (num_anchor)
        mask = mx.nd.sum(mask, axis=1)
        # row maybe sampled by 2 columns but still only matches to most overlapping gt
        samples = mx.nd.where(mask, mx.nd.ones_like(samples), samples)

        # set positive overlap to 1
        samples = mx.nd.where(ious_max_per_anchor >= self._pos_iou_thresh,
                              mx.nd.ones_like(samples), samples)
        # set negative overlap to -1
        tmp = (ious_max_per_anchor < self._neg_iou_thresh) * (ious_max_per_anchor >= 0)
        samples = mx.nd.where(tmp, mx.nd.ones_like(samples) * -1, samples)

        # subsample fg labels
        samples = samples.asnumpy()
        num_pos = int((samples > 0).sum())
        if num_pos > self._max_pos:
            disable_indices = np.random.choice(
                np.where(samples > 0)[0], size=(num_pos - self._max_pos), replace=False)
            samples[disable_indices] = 0  # use 0 to ignore

        # subsample bg labels
        num_neg = int((samples < 0).sum())
        # if pos_sample is less than quota, we can have negative samples filling the gap
        max_neg = self._num_sample - min(num_pos, self._max_pos)
        if num_neg > max_neg:
            disable_indices = np.random.choice(
                np.where(samples < 0)[0], size=(num_neg - max_neg), replace=False)
            samples[disable_indices] = 0

        # convert to ndarray
        samples = mx.nd.array(samples, ctx=matches.context)
        return samples, matches

加上本身的hard部分,默認0.7~0.3 既不是正樣本,也不是負樣本。

通過試驗,直接改成既不是正樣本,也不是負樣本,效果很差,而他標記爲難gt,而其餘錨框與他交爲正樣本,則改成既不是正樣本,也不是負樣本,效果會好一點點。

不少教程一本正經說Faster rcnn 的網絡結構以下:

不能否認的,可是絕對不是gluon cv 的faster rcnn網絡結構,後面的全鏈接層是RCNN層,想要達到更好的效果處理難樣本,那裏一樣須要修改。

相關文章
相關標籤/搜索