代碼實現:git
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data import os os.environ['TF_CPP_MIN_LOG_LEVEL']='2'
# 定義一個初始化權重的函數
def weight_varibles(shape): w = tf.Variable(tf.random_normal(shape=shape,mean=0.0,stddev=1.0)) return w #定義一個初始化偏置的函數
def bias_varibles(shape): b = tf.Variable(tf.constant(0.0,shape=shape)) return b def model(): """ 自定義的卷積模型 :return: """
# 1.準備數據的佔位符 x [None,784] y_true[None,10]
with tf.variable_scope("data"): x = tf.placeholder(tf.float32, [None,784]) y_true = tf.placeholder(tf.int32, [None,10]) # 2.一卷積層 卷積 激活 池化 5,5,1,32個 激活 tf.nn.relu 池化
with tf.variable_scope("conv1"): # 隨機初始化權重
w_conv1 = weight_varibles([5,5,1,32]) # 隨機生成偏置
b_conv1 = bias_varibles([32]) # 對x進行形狀的改變[None,784] 改變成思惟數組 [None,28,28,1]
x_reshape = tf.reshape(x,[-1,28,28,1]) x_relu = tf.nn.relu(tf.nn.conv2d(x_reshape,w_conv1,strides=[1,1,1,1],padding="SAME") + b_conv1) # 池化 2*2 strides2 [None,28,28,32] -->[None,14,14,32]
x_pool1 = tf.nn.max_pool(x_relu,ksize=[1,2,2,1],strides=[1,2,2,1],padding="SAME") # 3 二層卷積
with tf.variable_scope("conv2"): # 隨機初始化權重 權重[5,5,32,64] 偏置[64]
w_conv2 = weight_varibles([5,5,32,64]) b_conv2 = bias_varibles([64]) #對卷積的激活與池化
# 卷積由 [None,14,14,32] ----->[None,14,14,64]
x_relu2 = tf.nn.relu(tf.nn.conv2d(x_pool1,w_conv2,strides=[1,1,1,1],padding="SAME") + b_conv2) # 池化 2*2 strides 2,[None,14,14,64] --->[None,7,7,64]
x_pool2 = tf.nn.max_pool(x_relu2,ksize=[1,2,2,1],strides=[1,2,2,1],padding="SAME") # 4 全鏈接層 [None,7,7,64] --->[None,7*7*64]*[7*7*64,10]+[10] =[None,10]
with tf.variable_scope(""): #隨機初始化權重和偏置
w_fc = weight_varibles([7 * 7 * 64, 10]) b_fc = bias_varibles([10]) # 修改形狀[None,7,7,64] --->[None,7*7*64]
x_fc_reshape = tf.reshape(x_pool2,[-1,7*7*64]) #進行矩陣運算 得到每一個樣本的10個結果
y_predict = tf.matmul(x_fc_reshape,w_fc) + b_fc return x,y_true,y_predict def cunv_fc(): # 獲取真實的數據
mnist = input_data.read_data_sets("./mnist/input_data/",one_hot=True) #定義模型得出輸出
x,y_true,y_predict = model() # 求出全部樣本的損失 求平均值
with tf.compat.v1.variable_scope("soft_cross"): # 計算平均交叉熵損失
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_true, logits=y_predict)) # 梯度降低求出損失
with tf.compat.v1.variable_scope("optimizer"): train_op = tf.compat.v1.train.GradientDescentOptimizer(0.1).minimize(loss) # 計算準確率
with tf.compat.v1.variable_scope("acc"): equal_list = tf.equal(tf.argmax(y_true, 1), tf.argmax(y_predict, 1)) # 轉換樣本類型 和求平均值
accuracy = tf.reduce_mean(tf.cast(equal_list, tf.float32)) # 定義一個初始化的變量op
init_op = tf.global_variables_initializer() #開啓會話運行
with tf.compat.v1.Session() as sess: # 初始化變量
sess.run(init_op) # 迭代步數去訓練 更新參數預測
for i in range(1000): # 取出真實的特徵值和目標值
mnist_x, mnist_y = mnist.train.next_batch(50) # 運行train_op訓練
sess.run(train_op, feed_dict={x: mnist_x, y_true: mnist_y}) print("訓練第%d次,準確率爲%f" % (i, sess.run(accuracy, feed_dict={x: mnist_x, y_true: mnist_y}))) if __name__ == '__main__': cunv_fc()