JavaShuo
欄目
標籤
Generative Adversarial User Model for Reinforcement Learning Based Recommendation System
時間 2020-12-29
原文
原文鏈接
Generative Adversarial User Model for Reinforcement Learning Based Recommendation System ICML 2019 摘要: 本文是推薦系統和強化學習結合起來的應用: 主要是2點: 1 我們開發了一個生成式的對抗學習(GAN)公式來模擬用戶的行爲動態,並恢復她的獎勵功能。通過聯合最小二乘優化算法,同時對這兩個分量進
>>阅读原文<<
相關文章
1.
Deep Learning Recommendation Model for Personalization and Recommendation Systems
2.
AT-GAN: A Generative Attack Model for Adversarial Transferring on Generative Adversarial Nets
3.
論文筆記 Benchmarking Model-Based Reinforcement Learning
4.
Model-Based Reinforcement Learning: Theory and Practice 譯文
5.
MetaSelector: Meta-Learning for Recommendation with User-Level Adaptive Model Selection 走讀
6.
[Reinforcement Learning] Model-Free Prediction
7.
Reinforcement Learning(二):Value-Based
8.
[Reinforcement Learning] Model-Free Control
9.
Reinforcement Learning(三):Policy-Based
10.
Reinforcement Learning強化學習系列之一:model-based learning
更多相關文章...
•
XSLT system-property() 函數
-
XSLT 教程
•
Swift for 循環
-
Swift 教程
•
Java Agent入門實戰(三)-JVM Attach原理與使用
•
Flink 數據傳輸及反壓詳解
相關標籤/搜索
recommendation
adversarial
generative
based
reinforcement
system
learning
model
user
system&software
MySQL教程
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
升級Gradle後報錯Gradle‘s dependency cache may be corrupt (this sometimes occurs
2.
Smarter, Not Harder
3.
mac-2019-react-native 本地環境搭建(xcode-11.1和android studio3.5.2中Genymotion2.12.1 和VirtualBox-5.2.34 )
4.
查看文件中關鍵字前後幾行的內容
5.
XXE萌新進階全攻略
6.
Installation failed due to: ‘Connection refused: connect‘安卓studio端口占用
7.
zabbix5.0通過agent監控winserve12
8.
IT行業UI前景、潛力如何?
9.
Mac Swig 3.0.12 安裝
10.
Windows上FreeRDP-WebConnect是一個開源HTML5代理,它提供對使用RDP的任何Windows服務器和工作站的Web訪問
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
Deep Learning Recommendation Model for Personalization and Recommendation Systems
2.
AT-GAN: A Generative Attack Model for Adversarial Transferring on Generative Adversarial Nets
3.
論文筆記 Benchmarking Model-Based Reinforcement Learning
4.
Model-Based Reinforcement Learning: Theory and Practice 譯文
5.
MetaSelector: Meta-Learning for Recommendation with User-Level Adaptive Model Selection 走讀
6.
[Reinforcement Learning] Model-Free Prediction
7.
Reinforcement Learning(二):Value-Based
8.
[Reinforcement Learning] Model-Free Control
9.
Reinforcement Learning(三):Policy-Based
10.
Reinforcement Learning強化學習系列之一:model-based learning
>>更多相關文章<<