JavaShuo
欄目
標籤
Generative Adversarial User Model for Reinforcement Learning Based Recommendation System
時間 2020-12-29
原文
原文鏈接
Generative Adversarial User Model for Reinforcement Learning Based Recommendation System ICML 2019 摘要: 本文是推薦系統和強化學習結合起來的應用: 主要是2點: 1 我們開發了一個生成式的對抗學習(GAN)公式來模擬用戶的行爲動態,並恢復她的獎勵功能。通過聯合最小二乘優化算法,同時對這兩個分量進
>>阅读原文<<
相關文章
1.
Deep Learning Recommendation Model for Personalization and Recommendation Systems
2.
AT-GAN: A Generative Attack Model for Adversarial Transferring on Generative Adversarial Nets
3.
論文筆記 Benchmarking Model-Based Reinforcement Learning
4.
Model-Based Reinforcement Learning: Theory and Practice 譯文
5.
MetaSelector: Meta-Learning for Recommendation with User-Level Adaptive Model Selection 走讀
6.
[Reinforcement Learning] Model-Free Prediction
7.
Reinforcement Learning(二):Value-Based
8.
[Reinforcement Learning] Model-Free Control
9.
Reinforcement Learning(三):Policy-Based
10.
Reinforcement Learning強化學習系列之一:model-based learning
更多相關文章...
•
XSLT system-property() 函數
-
XSLT 教程
•
Swift for 循環
-
Swift 教程
•
Java Agent入門實戰(三)-JVM Attach原理與使用
•
Flink 數據傳輸及反壓詳解
相關標籤/搜索
recommendation
adversarial
generative
based
reinforcement
system
learning
model
user
system&software
MySQL教程
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
融合阿里雲,牛客助您找到心儀好工作
2.
解決jdbc(jdbctemplate)在測試類時不報錯在TomCatb部署後報錯
3.
解決PyCharm GoLand IntelliJ 等 JetBrains 系列 IDE無法輸入中文
4.
vue+ant design中關於圖片請求不顯示的問題。
5.
insufficient memory && Native memory allocation (malloc) failed
6.
解決IDEA用Maven創建的Web工程不能創建Java Class文件的問題
7.
[已解決] Error: Cannot download ‘https://start.spring.io/starter.zip?
8.
在idea讓java文件夾正常使用
9.
Eclipse啓動提示「subversive connector discovery」
10.
帥某-技巧-快速轉帖博主文章(article_content)
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
Deep Learning Recommendation Model for Personalization and Recommendation Systems
2.
AT-GAN: A Generative Attack Model for Adversarial Transferring on Generative Adversarial Nets
3.
論文筆記 Benchmarking Model-Based Reinforcement Learning
4.
Model-Based Reinforcement Learning: Theory and Practice 譯文
5.
MetaSelector: Meta-Learning for Recommendation with User-Level Adaptive Model Selection 走讀
6.
[Reinforcement Learning] Model-Free Prediction
7.
Reinforcement Learning(二):Value-Based
8.
[Reinforcement Learning] Model-Free Control
9.
Reinforcement Learning(三):Policy-Based
10.
Reinforcement Learning強化學習系列之一:model-based learning
>>更多相關文章<<