1,讀寫鎖的初始化與銷燬,靜態初始化的話,能夠直接使用PTHREAD_RWLOCK_INITIALIZER。c++
#include <pthread.h> int pthread_rwlock_destroy(pthread_rwlock_t *rwlock); int pthread_rwlock_init(pthread_rwlock_t *restrict rwlock, const pthread_rwlockattr_t *restrict attr); pthread_rwlock_t rwlock = PTHREAD_RWLOCK_INITIALIZER;
2,用讀的方式加鎖和嘗試(沒鎖上就當即返回)加鎖。shell
#include <pthread.h> int pthread_rwlock_rdlock(pthread_rwlock_t *rwlock); int pthread_rwlock_tryrdlock(pthread_rwlock_t *rwlock);
3,用寫的方式加鎖和嘗試(沒鎖上就當即返回)加鎖。ubuntu
#include <pthread.h> int pthread_rwlock_wrlock(pthread_rwlock_t *rwlock); int pthread_rwlock_trywrlock(pthread_rwlock_t *rwlock);
4,解鎖微信
#include <pthread.h> int pthread_rwlock_unlock(pthread_rwlock_t *rwlock);
例子1:用下面的例子的執行結果,觀察多個進程在同時讀寫同一個文件,會發生什麼。函數
#include <sys/types.h> #include <sys/stat.h> #include <fcntl.h> #include <unistd.h> #include <stdlib.h> #include <stdio.h> #include <string.h> #define MAXLINE 100 #define FN "num1" void my_lock(int fd){ return; } void my_unlock(int fd){ return; } int main(int args, char** argv){ int fd; long i,seqno; pid_t pid; ssize_t n; char line[MAXLINE + 1]; pid = getpid(); fd = open(FN, O_RDWR, 0664); for(i = 0; i < 20; ++i){ my_lock(fd); lseek(fd, 0L, SEEK_SET); n = read(fd, line, MAXLINE); line[n] = '\0'; seqno = atol(line); printf("%s:pid = %ld, seq = %ld\n", argv[0], (long)pid, seqno); seqno++; snprintf(line, sizeof(line), "%ld\n", seqno); lseek(fd, 0L, SEEK_SET); write(fd, line, strlen(line)); my_unlock(fd); } return 0; }
執行方法:同時執行上面例子的程序2次,也就是2個進程同時讀寫同一個文件。oop
ubuntu$ ./flockmain1 & ./flockmain1 &
執行結果以下,發現2個進程同時讀寫,在①處開始,內核切換進程時,數字亂套了。學習
ubuntu$ ./flockmain1 & ./flockmain1 & [1] 4760 [2] 4761 ubuntu$ ./flockmain1:pid = 4761, seq = 1 ./flockmain1:pid = 4761, seq = 2 ./flockmain1:pid = 4761, seq = 3 ./flockmain1:pid = 4761, seq = 4 ./flockmain1:pid = 4761, seq = 5 ./flockmain1:pid = 4761, seq = 6 ./flockmain1:pid = 4761, seq = 7 ./flockmain1:pid = 4761, seq = 8 ./flockmain1:pid = 4761, seq = 9 ./flockmain1:pid = 4761, seq = 10 ------------① ./flockmain1:pid = 4760, seq = 10 ./flockmain1:pid = 4761, seq = 11 ./flockmain1:pid = 4761, seq = 12 ./flockmain1:pid = 4761, seq = 13 ./flockmain1:pid = 4761, seq = 14 ./flockmain1:pid = 4761, seq = 15 ./flockmain1:pid = 4761, seq = 16 ./flockmain1:pid = 4761, seq = 17 ./flockmain1:pid = 4761, seq = 18 ./flockmain1:pid = 4761, seq = 19 ./flockmain1:pid = 4761, seq = 20 ./flockmain1:pid = 4760, seq = 11 ./flockmain1:pid = 4760, seq = 12 ./flockmain1:pid = 4760, seq = 13 ./flockmain1:pid = 4760, seq = 14 ./flockmain1:pid = 4760, seq = 15 ./flockmain1:pid = 4760, seq = 16 ./flockmain1:pid = 4760, seq = 17 ./flockmain1:pid = 4760, seq = 18 ./flockmain1:pid = 4760, seq = 19 ./flockmain1:pid = 4760, seq = 20 ./flockmain1:pid = 4760, seq = 21 ./flockmain1:pid = 4760, seq = 22 ./flockmain1:pid = 4760, seq = 23 ./flockmain1:pid = 4760, seq = 24 ./flockmain1:pid = 4760, seq = 25 ./flockmain1:pid = 4760, seq = 26 ./flockmain1:pid = 4760, seq = 27 ./flockmain1:pid = 4760, seq = 28 ./flockmain1:pid = 4760, seq = 29
爲了解決上面的問題,必須對文件的內容進行加鎖。線程
如何對文件內容加鎖?rest
struct flock { ... short l_type; /* Type of lock: F_RDLCK, F_WRLCK, F_UNLCK */ short l_whence; /* How to interpret l_start: SEEK_SET, SEEK_CUR, SEEK_END */ off_t l_start; /* Starting offset for lock */ off_t l_len; /* Number of bytes to lock */ pid_t l_pid; /* PID of process blocking our lock (set by F_GETLK and F_OFD_GETLK) */ ... };
修改上面的函數my_lock,my_unlock。main函數不變。code
例子2:
void my_lock(int fd){ struct flock lock; lock.l_type = F_WRLCK; wlock.l_whence = SEEK_SET; lock.l_start = 0; lock.l_len = 0; fcntl(fd, F_SETLKW, lock); } void my_unlock(int fd){ struct flock lock; lock.l_type = F_UNLCK; lock.l_whence = SEEK_SET; lock.l_start = 0; lock.l_len = 0; fcntl(fd, F_SETLK, lock); }
執行結果以下,發現數字不亂套了。
ubuntu$ ./flockmain & ./flockmain & [1] 4882 [2] 4883 ubuntu$ ./flockmain:pid = 4883, seq = 1 ./flockmain:pid = 4883, seq = 2 ./flockmain:pid = 4883, seq = 3 ./flockmain:pid = 4883, seq = 4 ./flockmain:pid = 4883, seq = 5 ./flockmain:pid = 4883, seq = 6 ./flockmain:pid = 4883, seq = 7 ./flockmain:pid = 4883, seq = 8 ./flockmain:pid = 4883, seq = 9 ./flockmain:pid = 4883, seq = 10 ./flockmain:pid = 4883, seq = 11 ./flockmain:pid = 4883, seq = 12 ./flockmain:pid = 4883, seq = 13 ./flockmain:pid = 4883, seq = 14 ./flockmain:pid = 4883, seq = 15 ./flockmain:pid = 4883, seq = 16 ./flockmain:pid = 4883, seq = 17 ./flockmain:pid = 4883, seq = 18 ./flockmain:pid = 4883, seq = 19 ./flockmain:pid = 4883, seq = 20 ./flockmain:pid = 4882, seq = 21 ./flockmain:pid = 4882, seq = 22 ./flockmain:pid = 4882, seq = 23 ./flockmain:pid = 4882, seq = 24 ./flockmain:pid = 4882, seq = 25 ./flockmain:pid = 4882, seq = 26 ./flockmain:pid = 4882, seq = 27 ./flockmain:pid = 4882, seq = 28 ./flockmain:pid = 4882, seq = 29 ./flockmain:pid = 4882, seq = 30 ./flockmain:pid = 4882, seq = 31 ./flockmain:pid = 4882, seq = 32 ./flockmain:pid = 4882, seq = 33 ./flockmain:pid = 4882, seq = 34 ./flockmain:pid = 4882, seq = 35 ./flockmain:pid = 4882, seq = 36 ./flockmain:pid = 4882, seq = 37 ./flockmain:pid = 4882, seq = 38 ./flockmain:pid = 4882, seq = 39 ./flockmain:pid = 4882, seq = 40
到此爲止,貌似解決了問題,可是若是同時執行例子1和例子2,結果以下,發現仍是亂的。
ys@ys-VirtualBox:~/IPC$ ./flockmain1 & ./flockmain & [1] 3602 [2] 3603 ys@ys-VirtualBox:~/IPC$ ./flockmain1:pid = 3602, seq = 1 ./flockmain:pid = 3603, seq = 1 ./flockmain:pid = 3603, seq = 2 ./flockmain:pid = 3603, seq = 3 ./flockmain:pid = 3603, seq = 4 ./flockmain:pid = 3603, seq = 5 ./flockmain:pid = 3603, seq = 6 ./flockmain:pid = 3603, seq = 7 ./flockmain:pid = 3603, seq = 8 ./flockmain:pid = 3603, seq = 9 ./flockmain:pid = 3603, seq = 10 ./flockmain1:pid = 3602, seq = 2 ./flockmain1:pid = 3602, seq = 3 ./flockmain1:pid = 3602, seq = 4 ./flockmain:pid = 3603, seq = 11 ./flockmain:pid = 3603, seq = 12 ./flockmain1:pid = 3602, seq = 5 ./flockmain:pid = 3603, seq = 13 ./flockmain1:pid = 3602, seq = 6 ./flockmain1:pid = 3602, seq = 7 ./flockmain1:pid = 3602, seq = 8 ./flockmain:pid = 3603, seq = 14 ./flockmain:pid = 3603, seq = 15 ./flockmain1:pid = 3602, seq = 9 ./flockmain1:pid = 3602, seq = 10 ./flockmain:pid = 3603, seq = 16 ./flockmain:pid = 3603, seq = 17 ./flockmain1:pid = 3602, seq = 11 ./flockmain:pid = 3603, seq = 18 ./flockmain1:pid = 3602, seq = 12 ./flockmain1:pid = 3602, seq = 13 ./flockmain1:pid = 3602, seq = 14 ./flockmain:pid = 3603, seq = 19 ./flockmain:pid = 3603, seq = 20 ./flockmain1:pid = 3602, seq = 15 ./flockmain1:pid = 3602, seq = 16 ./flockmain1:pid = 3602, seq = 17 ./flockmain1:pid = 3602, seq = 18 ./flockmain1:pid = 3602, seq = 19 ./flockmain1:pid = 3602, seq = 20
用例子3來觀察:
#include <time.h> #include <sys/time.h> #include <stdio.h> #include <sys/types.h> #include <sys/stat.h> #include <fcntl.h> #include <pthread.h> #include <unistd.h> #include <stdlib.h> #include <sys/wait.h> void gftime(char* buf){ struct timeval tv; gettimeofday(&tv, NULL); long usec = tv.tv_usec; struct tm* tm = localtime(&tv.tv_sec); sprintf(buf, "%d:%d:%d.%ld",tm->tm_hour, tm->tm_min, tm->tm_sec,usec); } int main(){ char buff[100] = {0}; int fd = open("test.dat", O_RDWR | O_CREAT, 0664); struct flock lock; lock.l_type = F_RDLCK; lock.l_whence = SEEK_SET; lock.l_start = 0; lock.l_len = 0; fcntl(fd, F_SETLK, &lock); gftime(buff); printf("%s: parent has read lock\n", buff); //first child if(fork() == 0){ char buf2[100] = {0}; sleep(1); gftime(buf2); printf("%s: first child tries to obtain write lock\n", buf2); struct flock lock2; lock2.l_type = F_WRLCK; lock2.l_whence = SEEK_SET; lock2.l_start = 0; lock2.l_len = 0; fcntl(fd, F_SETLKW, &lock2); gftime(buf2); printf("%s: first child obtains write lock\n", buf2); sleep(2); lock2.l_type = F_UNLCK; lock2.l_whence = SEEK_SET; lock2.l_start = 0; lock2.l_len = 0; fcntl(fd, F_SETLK, &lock2); gftime(buf2); printf("%s: first child releases write lock\n", buf2); exit(0); } //secodn child if(fork() == 0){ char buf1[100] = {0}; sleep(3); gftime(buf1); printf("%s: second child tries to obtain read lock\n", buf1); struct flock lock1; lock1.l_type = F_RDLCK; lock1.l_whence = SEEK_SET; lock1.l_start = 0; lock1.l_len = 0; fcntl(fd, F_SETLKW, &lock1); gftime(buf1); printf("%s: second child obtains read lock\n", buf1); sleep(4); lock1.l_type = F_UNLCK; lock1.l_whence = SEEK_SET; lock1.l_start = 0; lock1.l_len = 0; fcntl(fd, F_SETLK, &lock1); gftime(buf1); printf("%s: second child release read lock\n", buf1); exit(0); } //parent process sleep(5); lock.l_type = F_UNLCK; lock.l_whence = SEEK_SET; lock.l_start = 0; lock.l_len = 0; fcntl(fd, F_SETLK, &lock); gftime(buff); printf("%s: parent releases read lock\n", buff); wait(NULL); wait(NULL); exit(0); }
在ubuntu上執行結果:
17:49:44.348946: parent has read lock 17:49:45.350191: first child tries to obtain write lock 17:49:47.350155: second child tries to obtain read lock 17:49:47.350409: second child obtains read lock 17:49:49.349442: parent releases read lock 17:49:51.351197: second child release read lock 17:49:51.351582: first child obtains write lock 17:49:53.351689: first child releases write lock
用例子4來觀察:
#include <time.h> #include <sys/time.h> #include <stdio.h> #include <sys/types.h> #include <sys/stat.h> #include <fcntl.h> #include <pthread.h> #include <unistd.h> #include <stdlib.h> #include <sys/wait.h> void gftime(char* buf){ struct timeval tv; gettimeofday(&tv, NULL); long usec = tv.tv_usec; struct tm* tm = localtime(&tv.tv_sec); sprintf(buf, "%d:%d:%d.%ld",tm->tm_hour, tm->tm_min, tm->tm_sec,usec); } int main(){ char buff[100] = {0}; int fd = open("test.dat", O_RDWR | O_CREAT, 0664); struct flock lock; lock.l_type = F_WRLCK; lock.l_whence = SEEK_SET; lock.l_start = 0; lock.l_len = 0; fcntl(fd, F_SETLK, &lock); gftime(buff); printf("%s: parent has write lock\n", buff); //first child if(fork() == 0){ char buf2[100] = {0}; sleep(1); gftime(buf2); printf("%s: first child tries to obtain write lock\n", buf2); struct flock lock2; lock2.l_type = F_WRLCK; lock2.l_whence = SEEK_SET; lock2.l_start = 0; lock2.l_len = 0; fcntl(fd, F_SETLKW, &lock2); gftime(buf2); printf("%s: first child obtains write lock\n", buf2); sleep(2); lock2.l_type = F_UNLCK; lock2.l_whence = SEEK_SET; lock2.l_start = 0; lock2.l_len = 0; fcntl(fd, F_SETLK, &lock2); gftime(buf2); printf("%s: first child releases write lock\n", buf2); exit(0); } //secodn child if(fork() == 0){ char buf1[100] = {0}; sleep(3); gftime(buf1); printf("%s: second child tries to obtain read lock\n", buf1); struct flock lock1; lock1.l_type = F_RDLCK; lock1.l_whence = SEEK_SET; lock1.l_start = 0; lock1.l_len = 0; fcntl(fd, F_SETLKW, &lock1); gftime(buf1); printf("%s: second child obtains read lock\n", buf1); sleep(4); lock1.l_type = F_UNLCK; lock1.l_whence = SEEK_SET; lock1.l_start = 0; lock1.l_len = 0; fcntl(fd, F_SETLK, &lock1); gftime(buf1); printf("%s: second child release read lock\n", buf1); exit(0); } //parent process sleep(5); lock.l_type = F_UNLCK; lock.l_whence = SEEK_SET; lock.l_start = 0; lock.l_len = 0; fcntl(fd, F_SETLK, &lock); gftime(buff); printf("%s: parent releases write lock\n", buff); wait(NULL); wait(NULL); exit(0); }
在ubuntu上執行結果:
17:49:29.796599: parent has write lock 17:49:30.797099: first child tries to obtain write lock 17:49:32.796885: second child tries to obtain read lock 17:49:34.796868: parent releases write lock 17:49:34.796987: second child obtains read lock 17:49:38.797148: second child release read lock 17:49:38.797297: first child obtains write lock 17:49:40.797727: first child releases write lock