Linux 讀寫鎖

線程的讀寫鎖函數:

1,讀寫鎖的初始化與銷燬,靜態初始化的話,能夠直接使用PTHREAD_RWLOCK_INITIALIZER。c++

#include <pthread.h>
int pthread_rwlock_destroy(pthread_rwlock_t *rwlock);
int pthread_rwlock_init(pthread_rwlock_t *restrict rwlock,
           const pthread_rwlockattr_t *restrict attr);
pthread_rwlock_t rwlock = PTHREAD_RWLOCK_INITIALIZER;

2,用讀的方式加鎖和嘗試(沒鎖上就當即返回)加鎖。shell

#include <pthread.h>
int pthread_rwlock_rdlock(pthread_rwlock_t *rwlock);
int pthread_rwlock_tryrdlock(pthread_rwlock_t *rwlock);

3,用寫的方式加鎖和嘗試(沒鎖上就當即返回)加鎖。ubuntu

#include <pthread.h>
int pthread_rwlock_wrlock(pthread_rwlock_t *rwlock);
int pthread_rwlock_trywrlock(pthread_rwlock_t *rwlock);

4,解鎖微信

#include <pthread.h>
int pthread_rwlock_unlock(pthread_rwlock_t *rwlock);

多個進程在同時讀寫同一個文件,會發生什麼?

例子1:用下面的例子的執行結果,觀察多個進程在同時讀寫同一個文件,會發生什麼。函數

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

#define MAXLINE 100
#define FN "num1"

void my_lock(int fd){
  return;
}

void my_unlock(int fd){
  return;
}

int main(int args, char** argv){

  int fd;
  long i,seqno;
  pid_t pid;
  ssize_t n;
  char line[MAXLINE + 1];

  pid = getpid();
  fd = open(FN, O_RDWR, 0664);

  for(i = 0; i < 20; ++i){
    my_lock(fd);

    lseek(fd, 0L, SEEK_SET);
    n = read(fd, line, MAXLINE);
    line[n] = '\0';

    seqno = atol(line);
    printf("%s:pid = %ld, seq = %ld\n", argv[0], (long)pid, seqno);

    seqno++;

    snprintf(line, sizeof(line), "%ld\n", seqno);

    lseek(fd, 0L, SEEK_SET);
    write(fd, line, strlen(line));

    my_unlock(fd);
  }

  return 0;
}

執行方法:同時執行上面例子的程序2次,也就是2個進程同時讀寫同一個文件。oop

ubuntu$ ./flockmain1 & ./flockmain1 &

執行結果以下,發現2個進程同時讀寫,在①處開始,內核切換進程時,數字亂套了。學習

ubuntu$ ./flockmain1 & ./flockmain1 &
[1] 4760
[2] 4761
ubuntu$ ./flockmain1:pid = 4761, seq = 1
./flockmain1:pid = 4761, seq = 2
./flockmain1:pid = 4761, seq = 3
./flockmain1:pid = 4761, seq = 4
./flockmain1:pid = 4761, seq = 5
./flockmain1:pid = 4761, seq = 6
./flockmain1:pid = 4761, seq = 7
./flockmain1:pid = 4761, seq = 8
./flockmain1:pid = 4761, seq = 9
./flockmain1:pid = 4761, seq = 10   ------------①
./flockmain1:pid = 4760, seq = 10
./flockmain1:pid = 4761, seq = 11
./flockmain1:pid = 4761, seq = 12
./flockmain1:pid = 4761, seq = 13
./flockmain1:pid = 4761, seq = 14
./flockmain1:pid = 4761, seq = 15
./flockmain1:pid = 4761, seq = 16
./flockmain1:pid = 4761, seq = 17
./flockmain1:pid = 4761, seq = 18
./flockmain1:pid = 4761, seq = 19
./flockmain1:pid = 4761, seq = 20
./flockmain1:pid = 4760, seq = 11
./flockmain1:pid = 4760, seq = 12
./flockmain1:pid = 4760, seq = 13
./flockmain1:pid = 4760, seq = 14
./flockmain1:pid = 4760, seq = 15
./flockmain1:pid = 4760, seq = 16
./flockmain1:pid = 4760, seq = 17
./flockmain1:pid = 4760, seq = 18
./flockmain1:pid = 4760, seq = 19
./flockmain1:pid = 4760, seq = 20
./flockmain1:pid = 4760, seq = 21
./flockmain1:pid = 4760, seq = 22
./flockmain1:pid = 4760, seq = 23
./flockmain1:pid = 4760, seq = 24
./flockmain1:pid = 4760, seq = 25
./flockmain1:pid = 4760, seq = 26
./flockmain1:pid = 4760, seq = 27
./flockmain1:pid = 4760, seq = 28
./flockmain1:pid = 4760, seq = 29

爲了解決上面的問題,必須對文件的內容進行加鎖。線程

如何對文件內容加鎖?rest

使用fcntl函數,它既能夠鎖整文件,也能夠鎖文件裏的某段內容。經過結構體flock來指定要鎖的範圍。若是 whence = SEEK_SET;l_start = 0;l_len = 0;就是鎖定整個文件。

struct flock {
               ...
               short l_type;    /* Type of lock: F_RDLCK,
                                   F_WRLCK, F_UNLCK */
               short l_whence;  /* How to interpret l_start:
                                   SEEK_SET, SEEK_CUR, SEEK_END */
               off_t l_start;   /* Starting offset for lock */
               off_t l_len;     /* Number of bytes to lock */
               pid_t l_pid;     /* PID of process blocking our lock
                                   (set by F_GETLK and F_OFD_GETLK) */
               ...
           };
  • F_SETLK:上鎖。若是發現已經被別的進程上鎖了,就直接返回-1,errno被設置成EACCES或者EAGAIN,不阻塞。
  • F_SETLKW:上鎖。阻塞等待。
  • F_GETLK:獲得鎖的狀態。

修改上面的函數my_lock,my_unlock。main函數不變。code

例子2:

void my_lock(int fd){
  struct flock lock;
  lock.l_type = F_WRLCK;
  wlock.l_whence = SEEK_SET;
  lock.l_start = 0;
  lock.l_len = 0;
  
  fcntl(fd, F_SETLKW, lock);
}

void my_unlock(int fd){
  struct flock lock;
  lock.l_type = F_UNLCK;
  lock.l_whence = SEEK_SET;
  lock.l_start = 0;
  lock.l_len = 0;

  fcntl(fd, F_SETLK, lock);
}

執行結果以下,發現數字不亂套了。

ubuntu$ ./flockmain & ./flockmain &
[1] 4882
[2] 4883
ubuntu$ ./flockmain:pid = 4883, seq = 1
./flockmain:pid = 4883, seq = 2
./flockmain:pid = 4883, seq = 3
./flockmain:pid = 4883, seq = 4
./flockmain:pid = 4883, seq = 5
./flockmain:pid = 4883, seq = 6
./flockmain:pid = 4883, seq = 7
./flockmain:pid = 4883, seq = 8
./flockmain:pid = 4883, seq = 9
./flockmain:pid = 4883, seq = 10
./flockmain:pid = 4883, seq = 11
./flockmain:pid = 4883, seq = 12
./flockmain:pid = 4883, seq = 13
./flockmain:pid = 4883, seq = 14
./flockmain:pid = 4883, seq = 15
./flockmain:pid = 4883, seq = 16
./flockmain:pid = 4883, seq = 17
./flockmain:pid = 4883, seq = 18
./flockmain:pid = 4883, seq = 19
./flockmain:pid = 4883, seq = 20
./flockmain:pid = 4882, seq = 21
./flockmain:pid = 4882, seq = 22
./flockmain:pid = 4882, seq = 23
./flockmain:pid = 4882, seq = 24
./flockmain:pid = 4882, seq = 25
./flockmain:pid = 4882, seq = 26
./flockmain:pid = 4882, seq = 27
./flockmain:pid = 4882, seq = 28
./flockmain:pid = 4882, seq = 29
./flockmain:pid = 4882, seq = 30
./flockmain:pid = 4882, seq = 31
./flockmain:pid = 4882, seq = 32
./flockmain:pid = 4882, seq = 33
./flockmain:pid = 4882, seq = 34
./flockmain:pid = 4882, seq = 35
./flockmain:pid = 4882, seq = 36
./flockmain:pid = 4882, seq = 37
./flockmain:pid = 4882, seq = 38
./flockmain:pid = 4882, seq = 39
./flockmain:pid = 4882, seq = 40

到此爲止,貌似解決了問題,可是若是同時執行例子1和例子2,結果以下,發現仍是亂的。

也就是說在協做線程(cooperating processes)間,文件鎖(也叫勸告性上鎖)也起做用的。可是不徹底不相關的進程中,文件鎖也不起做用的。如何解決呢?使用強制性上鎖。

ys@ys-VirtualBox:~/IPC$ ./flockmain1 & ./flockmain &
[1] 3602
[2] 3603
ys@ys-VirtualBox:~/IPC$ ./flockmain1:pid = 3602, seq = 1
./flockmain:pid = 3603, seq = 1
./flockmain:pid = 3603, seq = 2
./flockmain:pid = 3603, seq = 3
./flockmain:pid = 3603, seq = 4
./flockmain:pid = 3603, seq = 5
./flockmain:pid = 3603, seq = 6
./flockmain:pid = 3603, seq = 7
./flockmain:pid = 3603, seq = 8
./flockmain:pid = 3603, seq = 9
./flockmain:pid = 3603, seq = 10
./flockmain1:pid = 3602, seq = 2
./flockmain1:pid = 3602, seq = 3
./flockmain1:pid = 3602, seq = 4
./flockmain:pid = 3603, seq = 11
./flockmain:pid = 3603, seq = 12
./flockmain1:pid = 3602, seq = 5
./flockmain:pid = 3603, seq = 13
./flockmain1:pid = 3602, seq = 6
./flockmain1:pid = 3602, seq = 7
./flockmain1:pid = 3602, seq = 8
./flockmain:pid = 3603, seq = 14
./flockmain:pid = 3603, seq = 15
./flockmain1:pid = 3602, seq = 9
./flockmain1:pid = 3602, seq = 10
./flockmain:pid = 3603, seq = 16
./flockmain:pid = 3603, seq = 17
./flockmain1:pid = 3602, seq = 11
./flockmain:pid = 3603, seq = 18
./flockmain1:pid = 3602, seq = 12
./flockmain1:pid = 3602, seq = 13
./flockmain1:pid = 3602, seq = 14
./flockmain:pid = 3603, seq = 19
./flockmain:pid = 3603, seq = 20
./flockmain1:pid = 3602, seq = 15
./flockmain1:pid = 3602, seq = 16
./flockmain1:pid = 3602, seq = 17
./flockmain1:pid = 3602, seq = 18
./flockmain1:pid = 3602, seq = 19
./flockmain1:pid = 3602, seq = 20

第一個問題:假如一個文件被一個進程以讀的方式鎖定,並有另外一個進程在等待讀鎖定解鎖後,用寫入的方式鎖定,這時是否容許另外一個進程的還以讀的方式取得鎖定?

用例子3來觀察:

#include <time.h>
#include <sys/time.h>
#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <pthread.h>
#include <unistd.h>
#include <stdlib.h>
#include <sys/wait.h>

void gftime(char* buf){
  struct timeval tv;
  gettimeofday(&tv, NULL);
  long usec = tv.tv_usec;
  struct tm* tm = localtime(&tv.tv_sec);
  sprintf(buf, "%d:%d:%d.%ld",tm->tm_hour, tm->tm_min, tm->tm_sec,usec);

}

int main(){
  char buff[100] = {0};
 
  int fd = open("test.dat", O_RDWR | O_CREAT, 0664);

  struct flock lock;
  
  lock.l_type = F_RDLCK;
  lock.l_whence = SEEK_SET;
  lock.l_start = 0;
  lock.l_len = 0;
  fcntl(fd, F_SETLK, &lock);

  gftime(buff);
  printf("%s: parent has read lock\n", buff);

  //first child
  if(fork() == 0){

    char buf2[100] = {0};
    sleep(1);
    gftime(buf2);
    printf("%s: first child tries to obtain write lock\n", buf2);

    struct flock lock2;
    lock2.l_type = F_WRLCK;
    lock2.l_whence = SEEK_SET;
    lock2.l_start = 0;
    lock2.l_len = 0;
    fcntl(fd, F_SETLKW, &lock2);

    gftime(buf2);
    printf("%s: first child obtains write lock\n", buf2);

    sleep(2);

    lock2.l_type = F_UNLCK;
    lock2.l_whence = SEEK_SET;
    lock2.l_start = 0;
    lock2.l_len = 0;
    fcntl(fd, F_SETLK, &lock2);

    gftime(buf2);
    printf("%s: first child releases write lock\n", buf2);
    
    exit(0);
  }
  //secodn child
  if(fork() == 0){
    char buf1[100] = {0};
    sleep(3);
    gftime(buf1);
    printf("%s: second child tries to obtain read lock\n", buf1);

    struct flock lock1;
    lock1.l_type = F_RDLCK;
    lock1.l_whence = SEEK_SET;
    lock1.l_start = 0;
    lock1.l_len = 0;
    fcntl(fd, F_SETLKW, &lock1);

    gftime(buf1);
    printf("%s: second child obtains read lock\n", buf1);

    sleep(4);

    lock1.l_type = F_UNLCK;
    lock1.l_whence = SEEK_SET;
    lock1.l_start = 0;
    lock1.l_len = 0;
    fcntl(fd, F_SETLK, &lock1);

    gftime(buf1);
    printf("%s: second child release read lock\n", buf1);
    
    exit(0);
  }

  //parent process
  sleep(5);

  lock.l_type = F_UNLCK;
  lock.l_whence = SEEK_SET;
  lock.l_start = 0;
  lock.l_len = 0;
  fcntl(fd, F_SETLK, &lock);

  gftime(buff);
  printf("%s: parent releases read lock\n", buff);
  
  wait(NULL);
  wait(NULL);

  exit(0);
}

在ubuntu上執行結果:

17:49:44.348946: parent has read lock
17:49:45.350191: first child tries to obtain write lock
17:49:47.350155: second child tries to obtain read lock
17:49:47.350409: second child obtains read lock
17:49:49.349442: parent releases read lock
17:49:51.351197: second child release read lock
17:49:51.351582: first child obtains write lock
17:49:53.351689: first child releases write lock

第一個問題的答案:容許另外一個進程的還以讀的方式取得鎖定

第二個問題:假如一個文件被一個進程以寫的方式鎖定,這時又有2個進程在等待這個鎖的釋放,其中一個進程是以寫鎖的方式等待,其中另外一個進程是以讀鎖的方式等待,哪個會優先取得鎖?

用例子4來觀察:

#include <time.h>
#include <sys/time.h>
#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <pthread.h>
#include <unistd.h>
#include <stdlib.h>
#include <sys/wait.h>

void gftime(char* buf){
  struct timeval tv;
  gettimeofday(&tv, NULL);
  long usec = tv.tv_usec;
  struct tm* tm = localtime(&tv.tv_sec);
  sprintf(buf, "%d:%d:%d.%ld",tm->tm_hour, tm->tm_min, tm->tm_sec,usec);

}

int main(){
  char buff[100] = {0};
 
  int fd = open("test.dat", O_RDWR | O_CREAT, 0664);

  struct flock lock;
  
  lock.l_type = F_WRLCK;
  lock.l_whence = SEEK_SET;
  lock.l_start = 0;
  lock.l_len = 0;
  fcntl(fd, F_SETLK, &lock);

  gftime(buff);
  printf("%s: parent has write lock\n", buff);

  //first child
  if(fork() == 0){

    char buf2[100] = {0};
    sleep(1);
    gftime(buf2);
    printf("%s: first child tries to obtain write lock\n", buf2);

    struct flock lock2;
    lock2.l_type = F_WRLCK;
    lock2.l_whence = SEEK_SET;
    lock2.l_start = 0;
    lock2.l_len = 0;
    fcntl(fd, F_SETLKW, &lock2);

    gftime(buf2);
    printf("%s: first child obtains write lock\n", buf2);

    sleep(2);

    lock2.l_type = F_UNLCK;
    lock2.l_whence = SEEK_SET;
    lock2.l_start = 0;
    lock2.l_len = 0;
    fcntl(fd, F_SETLK, &lock2);

    gftime(buf2);
    printf("%s: first child releases write lock\n", buf2);
    
    exit(0);
  }
  //secodn child
  if(fork() == 0){
    char buf1[100] = {0};
    sleep(3);
    gftime(buf1);
    printf("%s: second child tries to obtain read lock\n", buf1);

    struct flock lock1;
    lock1.l_type = F_RDLCK;
    lock1.l_whence = SEEK_SET;
    lock1.l_start = 0;
    lock1.l_len = 0;
    fcntl(fd, F_SETLKW, &lock1);

    gftime(buf1);
    printf("%s: second child obtains read lock\n", buf1);

    sleep(4);

    lock1.l_type = F_UNLCK;
    lock1.l_whence = SEEK_SET;
    lock1.l_start = 0;
    lock1.l_len = 0;
    fcntl(fd, F_SETLK, &lock1);

    gftime(buf1);
    printf("%s: second child release read lock\n", buf1);
    
    exit(0);
  }

  //parent process
  sleep(5);

  lock.l_type = F_UNLCK;
  lock.l_whence = SEEK_SET;
  lock.l_start = 0;
  lock.l_len = 0;
  fcntl(fd, F_SETLK, &lock);

  gftime(buff);
  printf("%s: parent releases write lock\n", buff);
  
  wait(NULL);
  wait(NULL);

  exit(0);
}

在ubuntu上執行結果:

17:49:29.796599: parent has write lock
17:49:30.797099: first child tries to obtain write lock
17:49:32.796885: second child tries to obtain read lock
17:49:34.796868: parent releases write lock
17:49:34.796987: second child obtains read lock
17:49:38.797148: second child release read lock
17:49:38.797297: first child obtains write lock
17:49:40.797727: first child releases write lock

第二個問題的答案:沒有準確答案。在Ubuntu上的執行結果上看,讀鎖優先了,可是,可能在別的環境上又是寫鎖優先。按道理來講應該寫鎖優先吧?

c/c++ 學習互助QQ羣:877684253

本人微信:xiaoshitou5854

相關文章
相關標籤/搜索