支持:算法
struct matrix { double a[200][200]; } ans, base; matrix multiply(matrix x, matrix y) { matrix tmp; for (int i = 0; i < n; i++) for (int j = 0; j < n; j++) { tmp.a[i][j] = 0; for (int k = 0; k < n; k++) tmp.a[i][j] += x.a[i][k] * y.a[k][j]; } return tmp; }
由於矩陣的乘法支持結合律,因此B*A*A*A = B(A*A*A) = B*$A^{3}$ide
程序實現:spa
void fast_mod(int k) { while (k) { if (k & 1) ans = multiply(ans, base); base = multiply(base, base); k >>= 1; } }
例如:fibonacci數列的遞推關係 f(n) = f(n-1) + f(n-2)code
咱們能夠將矩陣構造爲:$\left( \begin{matrix} 0& 1\\ 1& 1\end{matrix} \right) \left( \begin{matrix} a\\ b\end{matrix} \right) =\left( \begin{matrix} b\\ a+b\end{matrix} \right) $orm
好比今天作的一個題目 zoj 2853 Evolutionblog
它就是先進行構造「進化」這個動做的矩陣。而後有多少次進化就等於"初始物種狀態矩陣" 乘 "進化矩陣」n
ip
題目 見文末 ci
附上個人代碼:rem
#include<cstdio> #include<cstring> int n; struct matrix { double a[200][200]; } ans, base; matrix multiply(matrix x, matrix y) { matrix tmp; for (int i = 0; i < n; i++) for (int j = 0; j < n; j++) { tmp.a[i][j] = 0; for (int k = 0; k < n; k++) tmp.a[i][j] += x.a[i][k] * y.a[k][j]; } return tmp; } void fast_mod(int k) { while (k) { if (k & 1) ans = multiply(ans, base); base = multiply(base, base); k >>= 1; } } int main() { int m, t, xi, yi; double s, zi, fin; int num[205]; while (~scanf("%d%d", &n, &m) && !(n == 0 && m == 0)) { for (int i = 0; i < n; i++) scanf("%d", &num[i]); scanf("%d", &t); memset(base.a, 0, sizeof(base.a)); for (int i = 0; i < n; i++) base.a[i][i] = 1; //初始爲進化成本身 while (t--) { scanf("%d%d%lf", &xi, &yi, &zi); base.a[xi][yi] += zi; base.a[xi][xi] -= zi; } memset(ans.a, 0, sizeof(ans.a)); for (int i = 0; i < n; i++) ans.a[i][i] = 1; fast_mod(m); fin = 0; for (int i = 0; i < n; i++) fin += num[i] * ans.a[i][n-1]; printf("%.0f\n", fin); } return 0; }
暫時還不會, = =、 之後補上。input
Evolution
Time Limit: 5 Seconds Memory Limit: 32768 KB
Evolution is a long, long process with extreme complexity and involves many species. Dr. C. P. Lottery is currently investigating a simplified model of evolution: consider that we have N (2 <= N <= 200) species in the whole process of evolution, indexed from 0 to N -1, and there is exactly one ultimate species indexed as N-1. In addition, Dr. Lottery divides the whole evolution process into M (2 <= M <= 100000) sub-processes. Dr. Lottery also gives an 'evolution rate' P(i, j) for 2 species i and j, where i and j are not the same, which means that in an evolution sub-process, P(i, j) of the population of species i will transform to species j, while the other part remains unchanged.
Given the initial population of all species, write a program for Dr. Lottery to determine the population of the ultimate species after the evolution process. Round your final result to an integer.
Input
The input contains multiple test cases!
Each test case begins with a line with two integers N, M. After that, there will be a line with N numbers, indicating the initial population of each species, then there will be a number T and T lines follow, each line is in format "i j P(i,j)" (0 <= P(i,j) <=1).
A line with N = 0 and M = 0 signals the end of the input, which should not be proceed.
Output
For each test case, output the rounded-to-integer population of the ultimate species after the whole evolution process. Write your answer to each test case in a single line.
Notes
- There will be no 'circle's in the evolution process.
- E.g. for each species i, there will never be a path i, s1, s2, ..., st, i, such that P(i,s1) <> 0, P(sx,sx+1) <> 0 and P(st, i) <> 0.
- The initial population of each species will not exceed 100,000,000.
- There're totally about 5 large (N >= 150) test cases in the input.
Example
Let's assume that P(0, 1) = P(1, 2) = 1, and at the beginning of a sub-process, the populations of 0, 1, 2 are 40, 20 and 10 respectively, then at the end of the sub-process, the populations are 0, 40 and 30 respectively.
Sample Input
2 3
100 20
1
0 1 1.0
4 100
1000 2000 3000 0
3
0 1 0.19
1 2 0.05
0 2 0.67
0 0
Sample Output
1200