文章轉載自:html
http://blog.sina.com.cn/s/blog_640029b301010xkv.html算法
FFT是離散傅立葉變換的快速算法,能夠將一個信號變換
到頻域。有些信號在時域上是很難看出什麼特徵的,可是如
果變換到頻域以後,就很容易看出特徵了。這就是不少信號
分析採用FFT變換的緣由。另外,FFT能夠將一個信號的頻譜
提取出來,這在頻譜分析方面也是常常用的。函數
雖然不少人都知道FFT是什麼,能夠用來作什麼,怎麼去
作,可是殊不知道FFT以後的結果是什意思、如何決定要使用
多少點來作FFT。測試
如今圈圈就根據實際經驗來講說FFT結果的具體物理意義。
一個模擬信號,通過ADC採樣以後,就變成了數字信號。採樣
定理告訴咱們,採樣頻率要大於信號頻率的兩倍,這些我就
不在此羅嗦了。url
採樣獲得的數字信號,就能夠作FFT變換了。N個採樣點,
通過FFT以後,就能夠獲得N個點的FFT結果。爲了方便進行FFT
運算,一般N取2的整數次方。spa
假設採樣頻率爲Fs,信號頻率F,採樣點數爲N。那麼FFT
以後結果就是一個爲N點的複數。每個點就對應着一個頻率
點。這個點的模值,就是該頻率值下的幅度特性。具體跟原始
信號的幅度有什麼關係呢?假設原始信號的峯值爲A,那麼FFT
的結果的每一個點(除了第一個點直流份量以外)的模值就是A
的N/2倍。而第一個點就是直流份量,它的模值就是直流份量
的N倍。而每一個點的相位呢,就是在該頻率下的信號的相位。
第一個點表示直流份量(即0Hz),而最後一個點N的再下一個
點(實際上這個點是不存在的,這裏是假設的第N+1個點,也
能夠看作是將第一個點分作兩半分,另外一半移到最後)則表示
採樣頻率Fs,這中間被N-1個點平均分紅N等份,每一個點的頻率
依次增長。例如某點n所表示的頻率爲:Fn=(n-1)*Fs/N。
由上面的公式能夠看出,Fn所能分辨到頻率爲爲Fs/N,若是
採樣頻率Fs爲1024Hz,採樣點數爲1024點,則能夠分辨到1Hz。
1024Hz的採樣率採樣1024點,恰好是1秒,也就是說,採樣1秒
時間的信號並作FFT,則結果能夠分析到1Hz,若是採樣2秒時
間的信號並作FFT,則結果能夠分析到0.5Hz。若是要提升頻率
分辨力,則必須增長採樣點數,也即採樣時間。頻率分辨率和
採樣時間是倒數關係。
假設FFT以後某點n用複數a+bi表示,那麼這個複數的模就是
An=根號a*a+b*b,相位就是Pn=atan2(b,a)。根據以上的結果,
就能夠計算出n點(n≠1,且n<=N/2)對應的信號的表達式爲:
An/(N/2)*cos(2*pi*Fn*t+Pn),即2*An/N*cos(2*pi*Fn*t+Pn)。
對於n=1點的信號,是直流份量,幅度即爲A1/N。
因爲FFT結果的對稱性,一般咱們只使用前半部分的結果,
即小於採樣頻率一半的結果。htm
好了,說了半天,看着公式也暈,下面圈圈以一個實際的
信號來作說明。blog
假設咱們有一個信號,它含有2V的直流份量,頻率爲50Hz、
相位爲-30度、幅度爲3V的交流信號,以及一個頻率爲75Hz、
相位爲90度、幅度爲1.5V的交流信號。用數學表達式就是以下:圖片
S=2+3*cos(2*pi*50*t-pi*30/180)+1.5*cos(2*pi*75*t+pi*90/180)get
式中cos參數爲弧度,因此-30度和90度要分別換算成弧度。
咱們以256Hz的採樣率對這個信號進行採樣,總共採樣256點。
按照咱們上面的分析,Fn=(n-1)*Fs/N,咱們能夠知道,每兩個
點之間的間距就是1Hz,第n個點的頻率就是n-1。咱們的信號
有3個頻率:0Hz、50Hz、75Hz,應該分別在第1個點、第51個點、
第76個點上出現峯值,其它各點應該接近0。實際狀況如何呢?
咱們來看看FFT的結果的模值如圖所示。
圖1 FFT結果
從圖中咱們能夠看到,在第1點、第51點、和第76點附近有
比較大的值。咱們分別將這三個點附近的數據拿上來細看:
1點: 512+0i
2點: -2.6195E-14 - 1.4162E-13i
3點: -2.8586E-14 - 1.1898E-13i
50點:-6.2076E-13 - 2.1713E-12i
51點:332.55 - 192i
52點:-1.6707E-12 - 1.5241E-12i
75點:-2.2199E-13 -1.0076E-12i
76點:3.4315E-12 + 192i
77點:-3.0263E-14 +7.5609E-13i
很明顯,1點、51點、76點的值都比較大,它附近的點值
都很小,能夠認爲是0,即在那些頻率點上的信號幅度爲0。
接着,咱們來計算各點的幅度值。分別計算這三個點的模值,
結果以下:
1點: 512
51點:384
76點:192
按照公式,能夠計算出直流份量爲:512/N=512/256=2;
50Hz信號的幅度爲:384/(N/2)=384/(256/2)=3;75Hz信號的
幅度爲192/(N/2)=192/(256/2)=1.5。可見,從頻譜分析出來
的幅度是正確的。
而後再來計算相位信息。直流信號沒有相位可言,不用管
它。先計算50Hz信號的相位,atan2(-192, 332.55)=-0.5236,
結果是弧度,換算爲角度就是180*(-0.5236)/pi=-30.0001。再
計算75Hz信號的相位,atan2(192, 3.4315E-12)=1.5708弧度,
換算成角度就是180*1.5708/pi=90.0002。可見,相位也是對的。
根據FFT結果以及上面的分析計算,咱們就能夠寫出信號的表達
式了,它就是咱們開始提供的信號。
總結:假設採樣頻率爲Fs,採樣點數爲N,作FFT以後,某
一點n(n從1開始)表示的頻率爲:Fn=(n-1)*Fs/N;該點的模值
除以N/2就是對應該頻率下的信號的幅度(對於直流信號是除以
N);該點的相位便是對應該頻率下的信號的相位。相位的計算
可用函數atan2(b,a)計算。atan2(b,a)是求座標爲(a,b)點的角
度值,範圍從-pi到pi。要精確到xHz,則須要採樣長度爲1/x秒
的信號,並作FFT。要提升頻率分辨率,就須要增長採樣點數,
這在一些實際的應用中是不現實的,須要在較短的時間內完成
分析。解決這個問題的方法有頻率細分法,比較簡單的方法是
採樣比較短期的信號,而後在後面補充必定數量的0,使其長度
達到須要的點數,再作FFT,這在必定程度上可以提升頻率分辨力。
具體的頻率細分法可參考相關文獻。
[附錄:本測試數據使用的matlab程序]
close all; %先關閉全部圖片
Adc=2; %直流份量幅度
A1=3; %頻率F1信號的幅度
A2=1.5; %頻率F2信號的幅度
F1=50; %信號1頻率(Hz)
F2=75; %信號2頻率(Hz)
Fs=256; %採樣頻率(Hz)
P1=-30; %信號1相位(度)
P2=90; %信號相位(度)
N=256; %採樣點數
t=[0:1/Fs:N/Fs]; %採樣時刻
%信號
S=Adc+A1*cos(2*pi*F1*t+pi*P1/180)+A2*cos(2*pi*F2*t+pi*P2/180);
%顯示原始信號
plot(S);
title('原始信號');
figure;
Y = fft(S,N); %作FFT變換
Ayy = (abs(Y)); %取模
plot(Ayy(1:N)); %顯示原始的FFT模值結果
title('FFT 模值');
figure;
Ayy=Ayy/(N/2); %換算成實際的幅度
Ayy(1)=Ayy(1)/2;
F=([1:N]-1)*Fs/N; %換算成實際的頻率值
plot(F(1:N/2),Ayy(1:N/2)); %顯示換算後的FFT模值結果
title('幅度-頻率曲線圖');
figure;Pyy=[1:N/2];for i="1:N/2" Pyy(i)=phase(Y(i)); %計算相位 Pyy(i)=Pyy(i)*180/pi; %換算爲角度end;plot(F(1:N/2),Pyy(1:N/2)); %顯示相位圖title('相位-頻率曲線圖');