型號:中科曙光I450-G10雙路塔式服務器html
CPU:Intel Xeon E5-2620 v2 @2.1GHz x24python
RAM:128GBlinux
DISK:2TB
git
GPU0:NVIDIA Tesla K20C - 用於並行計算
github
GPU1:NVIDIA Quadro K620 - 用於圖形顯示shell
OS:Ubuntu 14.04 LTS 64bit Desktop
vim
$ sudo apt-get update && sudo apt-get upgrade服務器
$ sudo apt-get install build-essential
app
進入Ubuntu,按Ctrl+Alt+F1進入tty,登錄tty後輸入以下命令python2.7
$ sudo service lightdm stop
該命令能夠關閉lightdm。
輸入下列命令添加驅動源:
$ sudo add-apt-repository ppa:xorg-edgers/ppa
$ sudo apt-get update
安裝340版本驅動:
$ sudo apt-get install nvidia-340
安裝完成後,繼續安裝下列包:
$ sudo apt-get install nvidia-340-uvm
安裝完成後,重啓系統。
輸入如下命令解壓:
$ ./cuda6.5.run --extract=/home/username/Documents/
解壓出來3個文件:
CUDA安裝包: cuda-linux64-rel-6.5.14-18749181.run
NVIDIA驅動: NVIDIA-Linux-x86_64-340.29.run(也能夠用這個安裝顯卡驅動)
SAMPLE包: cuda-samples-linux-6.5.14-18745345.run
給各個包增長權限:
$ sudo chmod +x *.run
經過如下命令安裝CUDA,安裝英文說明一步一步安裝至完成。
$ sudo ./cuda-linux64-rel-6.5.14-18749181.run
安裝後在/etc/profile中添加環境變量:
# vim /etc/profile
在最後一行添加:
PATH=/usr/local/cuda-6.5/bin:$PATH
export PATH
:wq!保存後,執行下列命令,使得環境變量當即生效:
# source /etc/profile
在/etc/ld.so.conf.d/加入cuda.conf文件:
# cd /etc/ld.so.conf.d/
# vim cuda.conf
內容以下:
/usr/local/cuda-6.5/lib64
:wq!保存後,執行下列命令使之馬上生效:
# ldconfig
$ sudo apt-get install freeglut3-dev build-essential libx11-dev libxmu-dev libxi-dev libglu1-mesa-dev
$ sudo ./cuda-sample-linux-6.5.14-18745345.run
$ sudo /usr/local/cuda-6.5/samples
$ sudo make
所有編譯完成後,運行deviceQuery
$ cd samples/bin/x86_64/linux/release
$ sudo ./deviceQuery
若是出現如下顯卡信息,則驅動和顯卡安裝成功。
./deviceQuery Starting... CUDA Device Query (Runtime API) version (CUDART static linking) Detected 2 CUDA Capable device(s) Device 0: "Tesla K20c" CUDA Driver Version / Runtime Version 6.5 / 6.5 CUDA Capability Major/Minor version number: 3.5 Total amount of global memory: 4800 MBytes (5032706048 bytes) (13) Multiprocessors, (192) CUDA Cores/MP: 2496 CUDA Cores GPU Clock rate: 706 MHz (0.71 GHz) Memory Clock rate: 2600 Mhz Memory Bus Width: 320-bit L2 Cache Size: 1310720 bytes Maximum Texture Dimension Size (x,y,z) 1D=(65536), 2D=(65536, 65536), 3D=(4096, 4096, 4096) Maximum Layered 1D Texture Size, (num) layers 1D=(16384), 2048 layers Maximum Layered 2D Texture Size, (num) layers 2D=(16384, 16384), 2048 layers Total amount of constant memory: 65536 bytes Total amount of shared memory per block: 49152 bytes Total number of registers available per block: 65536 Warp size: 32 Maximum number of threads per multiprocessor: 2048 Maximum number of threads per block: 1024 Max dimension size of a thread block (x,y,z): (1024, 1024, 64) Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535) Maximum memory pitch: 2147483647 bytes Texture alignment: 512 bytes Concurrent copy and kernel execution: Yes with 2 copy engine(s) Run time limit on kernels: No Integrated GPU sharing Host Memory: No Support host page-locked memory mapping: Yes Alignment requirement for Surfaces: Yes Device has ECC support: Enabled Device supports Unified Addressing (UVA): Yes Device PCI Bus ID / PCI location ID: 3 / 0 Compute Mode: < Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) > Device 1: "Quadro K620" CUDA Driver Version / Runtime Version 6.5 / 6.5 CUDA Capability Major/Minor version number: 5.0 Total amount of global memory: 2047 MBytes (2146762752 bytes) ( 3) Multiprocessors, (128) CUDA Cores/MP: 384 CUDA Cores GPU Clock rate: 1124 MHz (1.12 GHz) Memory Clock rate: 900 Mhz Memory Bus Width: 128-bit L2 Cache Size: 2097152 bytes Maximum Texture Dimension Size (x,y,z) 1D=(65536), 2D=(65536, 65536), 3D=(4096, 4096, 4096) Maximum Layered 1D Texture Size, (num) layers 1D=(16384), 2048 layers Maximum Layered 2D Texture Size, (num) layers 2D=(16384, 16384), 2048 layers Total amount of constant memory: 65536 bytes Total amount of shared memory per block: 49152 bytes Total number of registers available per block: 65536 Warp size: 32 Maximum number of threads per multiprocessor: 2048 Maximum number of threads per block: 1024 Max dimension size of a thread block (x,y,z): (1024, 1024, 64) Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535) Maximum memory pitch: 2147483647 bytes Texture alignment: 512 bytes Concurrent copy and kernel execution: Yes with 1 copy engine(s) Run time limit on kernels: Yes Integrated GPU sharing Host Memory: No Support host page-locked memory mapping: Yes Alignment requirement for Surfaces: Yes Device has ECC support: Disabled Device supports Unified Addressing (UVA): Yes Device PCI Bus ID / PCI location ID: 130 / 0 Compute Mode: < Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) > > Peer access from Tesla K20c (GPU0) -> Quadro K620 (GPU1) : No > Peer access from Quadro K620 (GPU1) -> Tesla K20c (GPU0) : No deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 6.5, CUDA Runtime Version = 6.5, NumDevs = 2, Device0 = Tesla K20c, Device1 = Quadro K620 Result = PASS
進入https://software.intel.com/en-us/intel-parallel-studio-xe網址,
註冊Intel® Parallel Studio XE Cluster Edition for Linux*
而後Intel會給郵箱發一封郵件,裏面有下載地址和product serial number。
我使用的是Intel Parallel Studio 2016。大概3664MB。
解壓parallel_studio_xe_2016.tgz軟件
進入文件夾,運行安裝程序:
$ cd parallel_studio_xe_2016.tgz
$ ./install_GUI.sh
而後會出現圖形安裝界面,一步一步點擊next安裝完成。
$ sudo vim /etc/ld.so.conf.d/intel_mkl.conf
內容以下:
/opt/intel/lib
/opt/intel/mkl/lib/intel64
:wq!保存後,執行下列命令使之馬上生效:
$ sudo ldconfig
$ sudo apt-get install gcc cmake git build-essential libgtk2.0-devpkg-config
$ sudo apt-get install libavcodec-dev libavformat-dev libjpeg62-dev libtiff4-dev libswscale-dev
$ sudo apt-get install python-dev python-numpy libtbb2 libtbb-dev libdc1394
$ sudo apt-get install libjpeg-dev libpng-dev libtiff-dev libjasper-dev libdc1394-22-dev
[徹底參考此文4-6點:http://blog.csdn.net/ws_20100/article/details/46493293 ]
Fedora設置和Ubuntu無異。
$ sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libboost-all-dev
$ sudo apt-get install libhdf5-serial-dev libgflags-dev libgoogle-glog-dev liblmdb-dev protobuf-compiler
$ sudo apt-get install python-dev python-pip
[徹底參考此文:http://blog.csdn.net/ws_20100/article/details/48859951 ]
$ unzip caffe-master.zip /home/username/
進入Caffe根目錄,並複製一份Makefile
$ cd /home/username/caffe-master
$ cp Makefile.config.example Makefile.config
修改裏面的內容:
## Refer to http://caffe.berkeleyvision.org/installation.html # Contributions simplifying and improving our build system are welcome! # cuDNN acceleration switch (uncomment to build with cuDNN). # USE_CUDNN := 1 # CPU-only switch (uncomment to build without GPU support). # CPU_ONLY := 1 # uncomment to disable IO dependencies and corresponding data layers # USE_LEVELDB := 0 # USE_LMDB := 0 # USE_OPENCV := 0 # To customize your choice of compiler, uncomment and set the following. # N.B. the default for Linux is g++ and the default for OSX is clang++ # CUSTOM_CXX := g++ # CUDA directory contains bin/ and lib/ directories that we need. CUDA_DIR := /usr/local/cuda # On Ubuntu 14.04, if cuda tools are installed via # "sudo apt-get install nvidia-cuda-toolkit" then use this instead: # CUDA_DIR := /usr # CUDA architecture setting: going with all of them. # For CUDA < 6.0, comment the *_50 lines for compatibility. CUDA_ARCH := -gencode arch=compute_20,code=sm_20 \ -gencode arch=compute_20,code=sm_21 \ -gencode arch=compute_30,code=sm_30 \ -gencode arch=compute_35,code=sm_35 \ -gencode arch=compute_50,code=sm_50 \ -gencode arch=compute_50,code=compute_50 # BLAS choice: # atlas for ATLAS (default) # mkl for MKL # open for OpenBlas BLAS := mkl # Custom (MKL/ATLAS/OpenBLAS) include and lib directories. # Leave commented to accept the defaults for your choice of BLAS # (which should work)! # BLAS_INCLUDE := /path/to/your/blas # BLAS_LIB := /path/to/your/blas # Homebrew puts openblas in a directory that is not on the standard search path # BLAS_INCLUDE := $(shell brew --prefix openblas)/include # BLAS_LIB := $(shell brew --prefix openblas)/lib # This is required only if you will compile the matlab interface. # MATLAB directory should contain the mex binary in /bin. MATLAB_DIR := /usr/local/MATLAB/R2014a # MATLAB_DIR := /Applications/MATLAB_R2012b.app # NOTE: this is required only if you will compile the python interface. # We need to be able to find Python.h and numpy/arrayobject.h. PYTHON_INCLUDE := /usr/include/python2.7 \ /usr/lib/python2.7/dist-packages/numpy/core/include # Anaconda Python distribution is quite popular. Include path: # Verify anaconda location, sometimes it's in root. # ANACONDA_HOME := $(HOME)/anaconda # PYTHON_INCLUDE := $(ANACONDA_HOME)/include \ # $(ANACONDA_HOME)/include/python2.7 \ # $(ANACONDA_HOME)/lib/python2.7/site-packages/numpy/core/include \ # We need to be able to find libpythonX.X.so or .dylib. PYTHON_LIB := /usr/lib # PYTHON_LIB := $(ANACONDA_HOME)/lib # Homebrew installs numpy in a non standard path (keg only) # PYTHON_INCLUDE += $(dir $(shell python -c 'import numpy.core; print(numpy.core.__file__)'))/include # PYTHON_LIB += $(shell brew --prefix numpy)/lib # Uncomment to support layers written in Python (will link against Python libs) # WITH_PYTHON_LAYER := 1 # Whatever else you find you need goes here. INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib # If Homebrew is installed at a non standard location (for example your home directory) and you use it for general dependencies # INCLUDE_DIRS += $(shell brew --prefix)/include # LIBRARY_DIRS += $(shell brew --prefix)/lib # Uncomment to use `pkg-config` to specify OpenCV library paths. # (Usually not necessary -- OpenCV libraries are normally installed in one of the above $LIBRARY_DIRS.) USE_PKG_CONFIG := 1 BUILD_DIR := build DISTRIBUTE_DIR := distribute # Uncomment for debugging. Does not work on OSX due to https://github.com/BVLC/caffe/issues/171 DEBUG := 1 # The ID of the GPU that 'make runtest' will use to run unit tests. TEST_GPUID := 0 # enable pretty build (comment to see full commands) Q ?= @
開始編譯:
$ make all -j24
編譯好了,能夠再編譯test和runtest
$ make test
$ make runtest
$ make matcaffe
$ make pycaffe
Enjoy~ Written By Timely~
若是有問題,能夠與我交流~