隨機過程學習筆記1:泊松過程

隨機過程的通常概念

隨機過程 T T ( , ) (-\infty,\infty) 的子集,對於每一個 t T t\in T X t X_t 是隨機變量,則稱隨機變量的集合 { X t t T } \{X_t|t\in T\} 是隨機過程, T T 是隨機過程的 \underline{指標集}
隨機過程的觀測或實現:對每一個 t T t\in T ,都獲得了 X t X_t 的觀測值 x t x_t ,稱 { x t t T } \{x_t|t\in T\} { X t t T } \{X_t|t\in T\} 是隨機過程的一次實現或一次觀測
軌跡或軌道:當 T T [ 0 , ) [0,\infty) ( , ) (-\infty,\infty) 時, { X t t T } \{X_t|t\in T\} 的一次觀測又稱爲是一條軌道或一條軌跡
時間序列 T = N T=N T = Z T=Z 時,隨機過程又稱爲時間序列html

計數過程的通常概念

計數過程:用來描述一段時間內發生的某類事件的次數的隨機過程,計數過程 { N ( t ) } \{N(t)\} 定義爲: N ( t ) N(t) ( 0 , t ] (0,t] 時間內某事件發生的次數,知足:
(1)對 t 0 t\ge 0 N ( t ) N(t) 是取非負整數值的隨機變量
(2) t s t\ge s 時, N ( t ) N ( s ) 0 N(t)\ge N(s)\ge 0
(3) N ( t ) N ( s ) N(t)-N(s) 表示 ( s , t ] (s,t] 時間段內該事件發生的次數
(4) N ( t ) N(t) 的軌跡是單調不減右連續的階梯函數
舉例:計數過程能夠表示某段時間內收到的手機短信數,某段時間內到達某個車站的乘客數目,某段時間內商場經理收到商品質量的投訴數,某段時間內股票市場股票成交的次數web

獨立增量性:對於計數過程 { N ( t ) } \{N(t)\} ,若是任取 0 < t 1 < t 2 < < t n 0<t_1<t_2<\cdots<t_n ,隨機變量 N ( t 1 ) , N ( t 2 ) N ( t 1 ) , , N ( t n ) N ( t n 1 ) N(t_1),N(t_2)-N(t_1),\cdots,N(t_n)-N(t_{n-1}) 是相互獨立的,則稱計數過程 { N ( t ) } \{N(t)\} 具備獨立增量性,該計數過程稱爲獨立增量過程app

平穩增量性:若是對計數過程 { N ( t ) } \{N(t)\} ,對任何的非負實數 s s ,隨機變量
N ( t 2 ) N ( t 1 ) , N ( t 2 + s ) N ( t 1 + s ) N(t_2)-N(t_1),N(t_2+s)-N(t_1+s) 同分布,則稱該計數過程具備平穩增量性,該計數過程稱爲平穩增量過程svg

泊松過程

泊松過程的定義

泊松過程 稱知足如下條件的計數過程 { N ( t ) } \{N(t)\} 是強度爲 λ \lambda 的泊松過程:
(1) { N ( t ) } \{N(t)\} 是知足 N ( 0 ) = 0 N(0)=0 的獨立增量過程和平穩增量過程
(2) N ( t ) N(t) 知足參數爲 λ t \lambda t 的泊松分佈函數

強度的含義 E N ( t ) = λ t EN(t)=\lambda t ,故單位時間內發生的平均事件數爲 E N ( t ) t = λ \frac{EN(t)}{t}=\lambda 所以,強度的實際含義是單位時間內發生時間的平均次數spa

等價定義:若是計數過程 { N ( t ) } \{N(t)\} 知足:
(1) N ( 0 ) = 0 N(0)=0
(2) { N ( t ) } \{N(t)\} 是獨立增量過程和平穩增量過程
(3) { N ( t ) } \{N(t)\} 知足普通性,即: { P ( N ( h ) = 1 ) = λ h + o ( h ) P ( N ( h ) 2 ) = o ( h ) \begin{cases} P(N(h)=1)=\lambda h+o(h)\\ P(N(h)\ge 2)=o(h) \end{cases} { N ( t ) } \{N(t)\} 是強度爲 λ \lambda 的泊松過程(通俗地講是,在極短的時間內,發生一次時間的機率同時間幾乎成正比,幾乎不可能發生兩次或以上事件)orm

證:
f 0 ( h ) = P { N ( h ) = 0 } = 1 P { N ( h ) = 1 } P { N ( h ) 2 } = 1 λ h + o ( h ) f_0(h)=P\{N(h)=0\}=1-P\{N(h)=1\}-P\{N(h)\ge 2\}=1-\lambda h+o(h) ,則當 Δ h > 0 \Delta h>0 f 0 ( h + Δ h ) = P { N ( h + Δ h ) = 0 } = P { N ( h ) = 0 , N ( h + Δ h ) N ( h ) = 0 } = P { N ( h ) = 0 } P { N ( Δ h ) = 0 } = f 0 ( h ) f 0 ( Δ h ) \begin{aligned} &f_0(h+\Delta h)=P\{N(h+\Delta h)=0\}\\=&P\{N(h)=0,N(h+\Delta h)-N(h)=0\}\\ =&P\{N(h)=0\}P\{N(\Delta h)=0\}\\ =&f_0(h)f_0(\Delta h) \end{aligned} 上式的第二個等號,能夠從兩個角度理解
第一個角度,計數過程的取值都是非負整數,且知足單調性, Δ h > 0 \Delta h>0 ,而 N ( h + Δ h ) = N ( h ) + N ( h + Δ h ) N ( h ) N(h+\Delta h)=N(h)+N(h+\Delta h)-N(h) ,因爲 N ( h ) , N ( h + Δ h ) N ( h ) N(h),N(h+\Delta h)-N(h) 都取非負整數值,二者之和爲零的充要條件是二者均爲0,若是 Δ h < 0 \Delta h<0
第二個角度,從計數過程的定義來看, ( 0 , h + Δ h ] (0,h+\Delta h] 這段時間內沒有任何事件發生的充要條件固然是 ( 0 , h ] , ( h , h + Δ h ] (0,h],(h,h+\Delta h] 時間段內都沒有任何事件發生,這兩段時間內只要有任何一段發生了一次事件,那麼 ( 0 , h + Δ h ] (0,h+\Delta h] 這段時間內都至少會發生1次事件
因而,當 Δ h > 0 \Delta h>0 時,就有 f 0 ( h + Δ h ) f 0 ( h ) = [ f 0 ( Δ h ) 1 ] f ( h ) = [ λ Δ h + o ( Δ h ) ] f 0 ( h ) f_0(h+\Delta h)-f_0(h)=[f_0(\Delta h)-1]f(h)=[-\lambda \Delta h+o(\Delta h)]f_0(h) 兩邊除以 Δ h \Delta h ,再令 Δ h 0 + \Delta h\to 0^+ ,便可證得 f ( h ) f(h) 的右導數存在,而且 f 0 + ( h ) = λ f 0 ( h ) f_0^{+}(h)=-\lambda f_0(h) 若是 Δ h < 0 \Delta h<0 ,那麼 f 0 ( h ) = f 0 ( h + Δ h ) f 0 ( Δ h ) f_0(h)=f_0(h+\Delta h)f_0(-\Delta h) 所以 f 0 ( h + Δ h ) f 0 ( h ) = f 0 ( h + Δ h ) [ 1 f 0 ( Δ h ) ] = f 0 ( h + Δ h ) [ λ Δ h + o ( Δ h ) ] f_0(h+\Delta h)-f_0(h)=f_0(h+\Delta h)[1-f_0(-\Delta h)]=f_0(h+\Delta h)[-\lambda \Delta h+o(\Delta h)] 由上式不可貴出 lim Δ 0 f 0 ( h + Δ h ) = f ( h ) \displaystyle \lim_{\Delta \to 0^-}f_0(h+\Delta h)=f(h) ,兩邊除以 Δ h \Delta h ,再令 Δ h 0 \Delta h\to 0^- ,便可證得 f ( h ) f(h) 的左導數也存在,而且 f 0 ( h ) = λ f 0 ( h ) f^{-}_0(h)=-\lambda f_0(h) f ( h ) f(h) h = 0 h=0 處可導,且知足微分方程 f 0 ( h ) = λ f 0 ( h ) f_0^\prime(h)=-\lambda f_0(h) 方程的通解爲 f 0 ( h ) = C e λ h f_0(h)=Ce^{-\lambda h} h = 0 h=0 f 0 ( h ) = 1 f_0(h)=1 ,故 C = 1 C=1 ,從而獲得 P { N ( h ) = 0 } = e λ h P\{N(h)=0\}=e^{-\lambda h} 。接下來就能夠求解 P { N ( h ) = 1 } P\{N(h)=1\} ,一樣地,咱們令 f 1 ( h ) = P { N ( h ) = 1 } f_1(h)=P\{N(h)=1\} ,當 Δ h > 0 \Delta h>0 f 1 ( h + Δ h ) = f 1 ( h ) f 0 ( Δ h ) + f 1 ( Δ h ) f 0 ( h ) f_1(h+\Delta h)=f_1(h)f_0(\Delta h)+f_1(\Delta h)f_0(h) 所以 f 1 ( h + Δ h ) f 1 ( h ) = f 1 ( h ) [ f 0 ( Δ h ) 1 ] + f 1 ( Δ h ) f 0 ( h ) = f 1 ( h ) [ λ Δ h + o ( Δ h ) ] + [ λ Δ h + o ( Δ h ) ] e λ h \begin{aligned} &f_1(h+\Delta h)-f_1(h)=f_1(h)[f_0(\Delta h)-1]+f_1(\Delta h)f_0(h)\\ =&f_1(h)[-\lambda \Delta h +o(\Delta h)]+[\lambda \Delta h+o(\Delta h)]e^{-\lambda h} \end{aligned} 兩邊除以 Δ h \Delta h ,令 Δ 0 + \Delta \to 0^+ ,便可證得 f 1 ( h ) f_1(h) h h 處存在右導數,而且 f 1 + ( h ) = λ f 1 ( h ) + λ e λ h f^+_1(h)=-\lambda f_1(h)+\lambda e^{-\lambda h} 若是 Δ h < 0 \Delta h<0 ,有 f 1 ( h + Δ h ) f ( h ) = f 1 ( h + Δ h ) [ 1 f 0 ( Δ h ) ] f 1 ( Δ h ) f 0 ( h + Δ h ) = [ λ Δ h + o ( Δ h ) ] f 1 ( h + Δ h ) [ λ Δ h + o ( Δ h ) ] f 0 ( h + Δ h ) \begin{aligned} &f_1(h+\Delta h)-f(h)\\ =&f_1(h+\Delta h)[1-f_0(-\Delta h)]-f_1(-\Delta h)f_0(h+\Delta h)\\ =&[-\lambda \Delta h +o(\Delta h)]f_1(h+\Delta h)-[-\lambda \Delta h+o(\Delta h)]f_0(h+\Delta h) \end{aligned} 同理可得 f 1 ( h ) f_1^{-}(h) 存在,而且 f 1 ( h ) = λ f 1 ( h ) + λ e λ h f_1^{-}(h)=-\lambda f_1(h)+\lambda e^{-\lambda h} 因而 f 1 ( h ) f_1(h) h h 處可導,而且知足微分方程 f 1 ( h ) = λ f 1 ( h ) + λ e λ h f_1^\prime(h)=-\lambda f_1(h)+\lambda e^{-\lambda h} 同時 f 1 ( 0 ) = 0 f_1(0)=0 ,方程組的通解爲 f 1 ( h ) = λ h e λ h + C e λ h f_1(h)=\lambda h e^{-\lambda h}+Ce^{-\lambda h} f 1 ( 0 ) = 0 f_1(0)=0 ,獲得 C = 0 C=0 f 1 ( h ) = λ h e λ h f_1(h)=\lambda h e^{-\lambda h} ,接下來咱們用數學概括法完成接下來的證實,假設對 k n k\le n ,都有 P { N ( h ) = k } = ( λ h ) k k ! e λ h P\{N(h)=k\}=\frac{(\lambda h)^k}{k!}e^{-\lambda h} 咱們來求 f n + 1 ( h ) = P { N ( h ) = n + 1 } f_{n+1}(h)=P\{N(h)=n+1\} ,咱們這裏設 f k ( h ) = ( λ h ) k k ! e λ h , k = 1 , , n f_k(h)=\frac{(\lambda h)^k}{k!}e^{-\lambda h},k=1,\cdots,n ,一樣地,當 Δ h > 0 \Delta h>0 時,有 f n + 1 ( h + Δ h ) = k = 0 n + 1 f k ( h ) f n + 1 k ( Δ h ) f_{n+1}(h+\Delta h)=\sum_{k=0}^{n+1}f_k(h)f_{n+1-k}(\Delta h) f n + 1 ( h + Δ h ) f n + 1 ( h ) = f n + 1 ( h ) ( 1 f 0 ( Δ h ) ) + k = 0 n f k ( h ) f n + 1 k ( Δ h ) f_{n+1}(h+\Delta h)-f_{n+1}(h)=f_{n+1}(h)(1-f_0(\Delta h))+\sum_{k=0}^nf_k(h)f_{n+1-k}(\Delta h) 兩邊除以 Δ h \Delta h ,再令 Δ h 0 + \Delta h\to 0^+ ,可證得 f n + 1 ( h ) f_{n+1}(h) h h 處右導數存在,而且 f n + 1 + ( h ) = λ f n + 1 ( h ) + λ f n ( h ) f_{n+1}^{+}(h)=\lambda f_{n+1}(h)+\lambda f_n(h) 模仿上面的證實,能夠證得 f n + 1 f_{n+1} h h 處左導數也存在,而且 f n + 1 ( h ) = λ f n + 1 ( h ) + λ f n ( h ) f_{n+1}^{-}(h)=\lambda f_{n+1}(h)+\lambda f_n(h) f n + 1 ( h ) = λ f n + 1 ( h ) + λ n + 1 h n n ! e λ h f_{n+1}^\prime(h)=\lambda f_{n+1}(h)+\frac{\lambda^{n+1}h^n}{n!}e^{-\lambda h} 該微分方程的通解爲 f n + 1 ( h ) = ( λ h ) n + 1 ( n + 1 ) ! e λ h + C e λ h f_{n+1}(h)=\frac{(\lambda h)^{n+1}}{(n+1)!}e^{-\lambda h}+C e^{-\lambda h} 再由 f n + 1 ( 0 ) = 0 f_{n+1}(0)=0 ,得 C = 0 C=0 ,故 f n + 1 ( h ) = ( λ h ) n + 1 ( n + 1 ) ! e λ h f_{n+1}(h)=\frac{(\lambda h)^{n+1}}{(n+1)!}e^{-\lambda h} 由概括法,對任意的 n = 1 , 2 , n=1,2,\cdots ,就有 P { N ( h ) = n } = ( λ t ) n n ! e λ t P\{N(h)=n\}=\frac{(\lambda t)^n}{n!}e^{-\lambda t} { N ( t ) } \{N(t)\} 是泊松過程xml

泊松呼叫流、等待時間、年齡、壽命

先給出這幾個概念,再給出他們的分佈。假設對 { N ( t ) } \{N(t)\} 對應的事件流,第一次事件發生的時間點爲 S 1 S_1 S 2 S_2 S 3 S_3 \cdots ,咱們將其畫在時間軸上,即
在這裏插入圖片描述
泊松呼叫流:計數過程 { N ( t ) } \{N(t)\} 對應的各事件發生的時刻 { S n } \{S_n\} { S n } \{S_n\} 是單調遞增的非負時間序列,由泊松呼叫流的一次實現能夠獲得 { N ( t ) } \{N(t)\} 的一次實現,因爲 N ( t ) N(t) 的含義是在 ( 0 , t ] (0,t] 內發生的事件的次數,故咱們只須要數 ( 0 , t ] (0,t] 時間內有多少個 S i S_i ,若是 N ( t ) = n N(t)=n 說明: S n t S_n\le t S n + 1 > t S_{n+1}>t ,咱們獲得如下的基本關係式
{ N ( t ) < n } = { S n > t } { N ( t ) = n } = { S n t < S n + 1 } \{N(t)< n\}=\{S_n>t\}\\ \{N(t)=n\}=\{S_n\le t < S_{n+1}\}
等待時間:即相鄰兩次事件發生的時間間隔,即 X i = S i S i 1 , i = 1 , 2 , X_i=S_{i}-S_{i-1},i=1,2,\cdots ,這裏定義 S 0 = 0 S_0=0
年齡和壽命:咱們把 S 1 , S 2 , S_1,S_2,\cdots 想象成更換某種零件的時間點,具體地講,在0時刻第一個零件開始運做,在 S 1 S_1 時刻第一個零件損壞,當即更換上第二個零件,在 S 2 S_2 時刻,第二個零件損壞,當即更換上第三個零件,以此類推。假設 N ( t ) = n N(t)=n ,此時已經更換了 n n 次零件,即此時運做的是機器的第 n + 1 n+1 個零件,那麼 S n S_n 是這個零件開始運做的時刻, S n + 1 S_{n+1} 是這個零件損壞的時刻,那麼,這個零件的年齡是 t S n t-S_n ,剩餘壽命是 S n + 1 t S_{n+1}-t ,將 n n 換成 N ( t ) N(t) ,年齡就是 t S N ( t ) t-S_{N(t)} ,壽命就是 S N ( t ) + 1 t S_{N(t)+1}-t ,前者咱們記爲 A ( t ) A(t) ,後者咱們記爲 R ( t ) R(t) htm

呼叫流的聯合分佈

如今咱們來求呼叫流 ( S 1 , , S n ) (S_1,\cdots,S_n) 的分佈,首先求單個 S n S_n 的分佈:實際上 { S n t } = { N ( t ) n } \{S_n\le t\}=\{N(t)\ge n\} ,因而就獲得 S n S_n 的分佈函數 F n ( t ) = k = n ( λ t ) k k ! e λ t F_n(t)=\sum_{k=n}^\infty \frac{(\lambda t)^k}{k!}e^{-\lambda t} 求導便可獲得其密度函數 p n ( t ) = k = n k λ k t k 1 k ! e λ t λ k = n ( λ t ) k k ! e λ t = λ k = n ( λ t ) k 1 ( k 1 ) ! e λ t λ k = n ( λ t ) k k ! e λ t = λ n Γ ( n ) t n 1 e λ t \begin{aligned} p_n(t)=&\sum_{k=n}^\infty k\frac{\lambda^k t^{k-1}}{k!}e^{-\lambda t}-\lambda\sum_{k=n}^\infty \frac{(\lambda t)^k}{k!}e^{-\lambda t}\\ =&\lambda \sum_{k=n}^\infty \frac{(\lambda t)^{k-1}}{(k-1)!}e^{-\lambda t}-\lambda \sum_{k=n}^\infty \frac{(\lambda t)^{k}}{k!}e^{-\lambda t}\\ =&\frac{\lambda^n}{\Gamma(n)}t^{n-1}e^{-\lambda t} \end{aligned} 可見 S n S_n 服從伽馬分佈,參數爲 n , λ n,\lambda ,其均值爲 n λ \frac{n}{\lambda} ,接下來咱們來求 ( S 1 , S 2 , , S n ) (S_1,S_2,\cdots,S_n) 的聯合分佈:咱們假設其分佈函數爲 F ( s 1 , s 2 , , s n ) = P { S 1 s 1 , S 2 s 2 , , S n s n } F(s_1,s_2,\cdots,s_n)=P\{S_1\le s_1,S_2\le s_2,\cdots,S_n\le s_n\} 若是 i < j i<j ,但 s i > s j s_i>s_j ,那麼 P { S 1 s 1 , , S i > s i , , S j s j , , S n s n } = P { S 1 s 1 , , S i 1 s i 1 , S i + 1 s i + 1 , , S n s n } F ( x 1 , x 2 , , x n ) = 0 \begin{aligned} &P\{S_1\le s_1,\cdots,S_i>s_i,\cdots,S_j\le s_j,\cdots,S_n\le s_n\}\\ =&P\{S_1\le s_1,\cdots,S_{i-1}\le s_{i-1},S_{i+1}\le s_{i+1},\cdots ,S_n\le s_n\}-\\ &F(x_1,x_2,\cdot,x_n)=0 \end{aligned} 兩邊對 x 1 , , x n x_1,\cdots,x_n 依次求偏導,則 p ( x 1 , , x n ) = 0 p(x_1,\cdots,x_n)=0 所以,咱們假設 s 1 s 2 s 3 s n s_1\le s_2\le s_3\cdots\le s_n ,咱們求分佈函數 F ( s 1 , , s n ) F(s_1,\cdots,s_n) ,以 n = 2 n=2 爲例, s 1 < s 2 s_1< s_2 ,則 F ( s 1 , s 2 ) = P { S 1 s 1 , S 2 s 2 } = P { S 2 s 2 } P { S 1 > s 1 , S 2 s 2 } \begin{aligned} F(s_1,s_2)=&P\{S_1\le s_1,S_2\le s_2\}\\ =&P\{S_2\le s_2\}-P\{S_1>s_1,S_2\le s_2\} \end{aligned} 而事件 { S 1 > s 1 , S 2 s 2 } \{S_1>s_1,S_2\le s_2\} 至關於在 ( 0 , s 1 ] (0,s_1] 段事件發生了0次, ( s 1 , s 2 ] (s_1,s_2] 段事件至少發生了兩次,有 P { S 1 > s 1 , S 2 s 2 } = P { N ( s 1 ) = 0 , N ( s 2 ) N ( s 1 ) 2 } = P { N ( s 1 ) = 0 } P { N ( s 2 s 1 ) 2 } = e λ s 1 ( k = 2 λ k ( s 2 s 1 ) k k ! ) e λ ( s 2 s 1 ) = ( k = 2 λ k ( s 2 s 1 ) k k ! ) e λ s 2 \begin{aligned} P\{S_1>s_1,S_2\le s_2\}=&P\{N(s_1)=0,N(s_2)-N(s_1)\ge 2\}\\ =&P\{N(s_1)=0\}P\{N(s_2-s_1)\ge 2\}\\ =&e^{-\lambda s_1}(\sum_{k=2}^\infty\frac{\lambda^k(s_2-s_1)^k}{k!})e^{-\lambda(s_2-s_1)}\\ =&(\sum_{k=2}^\infty\frac{\lambda^k(s_2-s_1)^k}{k!})e^{-\lambda s_2} \end{aligned} 則密度函數 p ( s 1 , s 2 ) = 2 s 1 s 2 F ( s 1 , s 2 ) = λ 2 e λ s 2 p(s_1,s_2)=\frac{\partial^2}{\partial s_1\partial s_2}F(s_1,s_2)=\lambda^2e^{-\lambda s_2} 所以 ( S 1 , S 2 ) (S_1,S_2) 的密度函數爲 p ( s 1 , s 2 ) = λ 2 e λ s 2 I s 1 < s 2 p(s_1,s_2)=\lambda^2e^{-\lambda s_2}I_{s_1<s_2} ,再求 n = 3 n=3 的情形,設 s 1 < s 2 < s 3 s_1< s_2< s_3 ,那麼 F ( s 1 , s 2 , s 3 ) = P { S 1 s 1 , S 2 s 2 , S 3 s 3 } = P { S 2 s 2 , S 3 s 3 } P { S 1 > s 1 , S 2 s 2 , S 3 s 3 } = P { S 2 s 2 , S 3 s 3 } P { S 1 > s 1 , S 2 s 2 } + P { S 1 > s 1 , S 2 s 2 , S 3 > s 3 } \begin{aligned} F(s_1,s_2,s_3)=&P\{S_1\le s_1,S_2\le s_2,S_3\le s_3\}\\ =&P\{S_2\le s_2,S_3\le s_3\}-P\{S_1>s_1,S_2\le s_2,S_3\le s_3\}\\ =&P\{S_2\le s_2,S_3\le s_3\}-P\{S_1>s_1,S_2\le s_2\}+\\ &P\{S_1>s_1,S_2\le s_2,S_3>s_3\} \end{aligned} 從下圖能夠看出 { S 1 > s 1 , S 2 s 2 , S 3 > s 3 } = { N ( s 1 ) = 0 , N ( s 2 ) N ( s 1 ) = 2 , N ( s 3 ) N ( s 2 ) = 0 } \{S_1>s_1,S_2\le s_2,S_3>s_3\}=\{N(s_1)=0,N(s_2)-N(s_1)=2,N(s_3)-N(s_2)=0\} 在這裏插入圖片描述
P { S 1 > s 1 , S 2 s 2 , S 3 > s 3 } = P { N ( s 1 ) = 0 } P { N ( s 2 ) N ( s 1 ) = 2 } P { N ( s 3 ) N ( s 2 ) = 0 } = e λ s 1 λ 2 ( s 2 s 1 ) 2 2 e λ ( s 2 s 1 ) e λ ( s 3 s 2 ) = λ 2 ( s 2 s 1 ) 2 2 e λ s 3 \begin{aligned} &P\{S_1>s_1,S_2\le s_2,S_3>s_3\}\\ =&P\{N(s_1)=0\}P\{N(s_2)-N(s_1)=2\}P\{N(s_3)-N(s_2)=0\}\\ =&e^{-\lambda s_1}\frac{\lambda^2(s_2-s_1)^2}{2}e^{-\lambda(s_2-s_1)}e^{-\lambda(s_3-s_2)}=\frac{\lambda^2(s_2-s_1)^2}{2}e^{-\lambda s_3} \end{aligned} 一樣地方法能夠獲得 ( S 1 , S 2 , S 3 ) (S_1,S_2,S_3) 的密度函數爲 p ( s 1 , s 2 , s 3 ) = λ 3 e λ s 3 I s 1 < s 2 < s 3 p(s_1,s_2,s_3)=\lambda^3e^{-\lambda s_3}I_{s_1<s_2<s_3} n = 2 n=2 n = 3 n=3 情形已經給出求 ( S 1 , , S n ) (S_1,\cdots,S_n) 的通常方法,當 n = 2 k + 1 n=2k+1 s 1 < s 2 < < s 2 k s_1<s_2<\cdots<s_{2k} 時,首先,比較容易求出的是如下機率 G k ( s 1 , s 2 , , s 2 k ) = P { S 1 > s 1 , S 2 s 2 , S 3 > s 3 , S 4 s 4 , , S 2 k 1 > s 2 k 1 , S 2 k s 2 k } = i = 1 n P { N ( s 2 i 1 ) N ( s 2 i 2 ) = 0 } . i = 1 n 1 P { N ( s 2 i ) N ( s 2 i 1 ) = 2 } × P { N ( s 2 k ) N ( s 2 k 1 ) 2 } = i = 1 n 1 λ 2 ( s 2 i s 2 i 1 ) 2 2 ( j = 2 λ j ( s 2 k s 2 k 1 ) j j ! ) e λ s 2 k \begin{aligned} &G_k(s_1,s_2,\cdots,s_{2k})\\ =&P\{S_1>s_1,S_2\le s_2,S_3>s_3,S_4\le s_4,\cdots,S_{2k-1}>s_{2k-1},S_{2k}\le s_{2k}\}\\ =&\prod_{i=1}^nP\{N(s_{2i-1})-N(s_{2i-2})=0\}.\prod_{i=1}^{n-1}P\{N(s_{2i})-N(s_{2i-1})=2\}\\ \times&P\{N(s_{2k})-N(s_{2k-1})\ge 2\}\\ =&\prod_{i=1}^{n-1}\frac{\lambda^2(s_{2i}-s_{2i-1})^2}{2}(\sum_{j=2}^\infty\frac{\lambda^j(s_{2k}-s_{2k-1})^j}{j!})e^{-\lambda s_{2k}} \end{aligned} 其中規定 s 0 = 0 s_0=0 ,先對 s 1 , , s 2 k 2 s_1,\cdots,s_{2k-2} 依次求偏導 2 k 2 s 1 s 2 s 2 k 2 G k = λ 2 k 2 ( j = 2 λ j ( s 2 k s 2 k 1 ) j j ! ) e λ s 2 k \frac{\partial^{2k-2}}{\partial s_1\partial s_2\cdots\partial s_{2k-2}}G_k=\lambda^{2k-2}(\sum_{j=2}^\infty\frac{\lambda^j(s_{2k}-s_{2k-1})^j}{j!})e^{-\lambda s_{2k}} 這樣對其他兩個變元求偏導就輕鬆不少,具體過程再也不詳述,最終獲得 2 k s 1 s 2 s 2 k G k = ( 1 ) k λ 2 k e λ s 2 k \frac{\partial^{2k}}{{\partial s_1\partial s_2\cdots\partial s_{2k}}}G_k=(-1)^k\lambda^{2k}e^{-\lambda s_{2k}} 如今,咱們令 G 1 ( s 1 , s 2 , , s n ) = P { S 1 > s 1 , S 2 s 2 , S 3 s 3 , , S 2 k s 2 k } G 2 ( s 1 , s 2 , , s n ) = P { S 1 > s 1 , S 2 s 2 , S 3 > s 3 , S 4 s 4 , S 5 s 5 , , S 2 k s 2 k } G i ( s 1 , s 2 , , s n ) = P { S 1 > s 1 , S 2 s 2 , , S 2 i 1 > s 2 i 1 , S j s j , n j > 2 i 1 } G k ( s 1 , s 2 , , s n ) = P { S 1 > s 1 , S 2 s 2 , S 3 > s 3 , S 4 s 4 , , S 2 k 1 > s 2 k 1 , S 2 k s 2 k } \begin{aligned} G_1(s_1,s_2,\cdots,s_n)=&P\{S_1>s_1,S_2\le s_2,S_3\le s_3,\cdots,S_{2k}\le s_{2k}\}\\ G_2(s_1,s_2,\cdots,s_n)=&P\{S_1>s_1,S_2\le s_2,S_3>s_3,S_4\le s_4,S_5\le s_5,\cdots,S_{2k}\le s_{2k}\}\\ \cdots\\ G_i(s_1,s_2,\cdots,s_n)=&P\{S_1>s_1,S_2\le s_2,\cdots,S_{2i-1}>s_{2i-1},S_j\le s_j,n\ge j>2i-1\}\\ \cdots\\ G_k(s_1,s_2,\cdots,s_n)=&P\{S_1>s_1,S_2\le s_2,S_3>s_3,S_4\le s_4,\cdots,S_{2k-1}>s_{2k-1},S_{2k}\le s_{2k}\} \end{aligned} 因而 F ( s 1 , s 2 , , s n ) = P { S 2 s 2 , S 3 s 3 , , S 2 k s 2 k } G 1 ( s 1 , , s n ) G 1 ( s 1 , , s n ) = P { S 1 > s 1 , S 2 s 2 , S 4 s 4 , , S 2 k s 2 k } G 2 ( s 1 , , s n ) F(s_1,s_2,\cdots,s_n)=P\{S_2\le s_2,S_3\le s_3,\cdots,S_{2k}\le s_{2k}\}-G_1(s_1,\cdots,s_n)\\ G_1(s_1,\cdots,s_n)=P\{S_1>s_1,S_2\le s_2,S_4\le s_4,\cdots,S_{2k}\le s_{2k}\}-G_2(s_1,\cdots,s_n)\\ \cdots 這樣看 F F G k G_k 的偏導數的關係應該是 2 k s 1 s 2 s 2 k F = ( 1 ) k 2 k s 1 s 2 s 2 k G k \frac{\partial^{2k}}{{\partial s_1\partial s_2\cdots\partial s_{2k}}}F=(-1)^k\frac{\partial^{2k}}{{\partial s_1\partial s_2\cdots\partial s_{2k}}}G_k 從而獲得 ( S 1 , , S 2 k ) (S_1,\cdots,S_{2k}) 的聯合密度應該是 p ( s 1 , , s n ) = λ 2 k e λ s 2 k I 0 < s 1 < < s 2 k p(s_1,\cdots,s_n)=\lambda^{2k}e^{-\lambda s_{2k}}I_{0<s_1<\cdots<s_{2k}} n n 爲奇數的時候也進行相似的討論,就獲得 ( S 1 , , S n ) (S_1,\cdots,S_n) 的聯合密度爲 p ( s 1 , , s n ) = λ n e λ s n I 0 < s 1 < s 2 < < s n p(s_1,\cdots,s_n)=\lambda^ne^{-\lambda s_n}I_{0<s_1<s_2<\cdots<s_n}
總結 { S n } \{S_n\} 是強度爲 λ \lambda 的泊松過程 { N ( t ) } \{N(t)\} 的呼叫流,則
(1) S n S_n 服從 Γ ( n , λ ) \Gamma(n,\lambda)
(2) ( S 1 , , S n ) (S_1,\cdots,S_n) 的聯合密度爲 p ( s 1 , , s n ) = λ n e λ s n I 0 < s 1 < s 2 < < s n p(s_1,\cdots,s_n)=\lambda^ne^{-\lambda s_n}I_{0<s_1<s_2<\cdots<s_n} blog

呼叫流的條件分佈

下面給定 N ( t ) = n N(t)=n 的條件, ( S 1 , , S n ) (S_1,\cdots,S_n) 的分佈:
按照條件機率的定義 P ( S 1 s 1 , , S n s n N ( t ) = n ) = P { S i s i , i = 1 , 2 , , n , N ( t ) = n } P { N ( t ) = n } P(S_1\le s_1,\cdots,S_n \le s_n|N(t)=n)=\frac{P\{S_i\le s_i,i=1,2,\cdots,n,N(t)=n\}}{P\{N(t)=n\}} 同非條件的聯合分佈的討論同樣,若是 ( s 1 , , s n ) (s_1,\cdots,s_n) 不知足 0 < s 1 < < s n < t 0<s_1<\cdots<s_n<t ,則對 s 1 , , s n s_1,\cdots,s_n 依次求偏導等於0,所以咱們假設 0 < s 1 < < s n < t 0<s_1<\cdots<s_n<t 。若是 n = 2 k n=2k ,比較容易求解的一個機率是 P { S 1 > s 1 , S 2 s 2 , S 3 > s 3 , S 4 s 4 , , S 2 k 1 > s 2 k 1 , S 2 k s 2 k , N ( t ) = n } P\{S_1>s_1,S_2\le s_2,S_3>s_3,S_4\le s_4,\cdots,S_{2k-1}>s_{2k-1},S_{2k}\le s_{2k},N(t)=n\} 咱們把這些時刻畫在時間軸上
在這裏插入圖片描述
這樣,如何求解這個機率值就一目瞭然了,這個事件等價於在 ( 0 , s 1 ] (0,s_1] 段事件發生了0次,在 ( s 1 , s 2 ] (s_1,s_2] 段事件發生了2次, ( s 2 , s 3 ] (s_2,s_3] 段事件發生了0次, ( s 3 , s 4 ] (s_3,s_4] 段事件發生了2次, \cdots ,在 ( s 2 k 1 , s 2 k ] (s_{2k-1},s_{2k}] 段事件發生了兩次,在 ( s 2 k , t ] (s_{2k},t] 事件發生了0次。所以 G ( s 1 , , s n ) = P { S 1 > s 1 , S 2 s 2 , S 3 > s 3 , S 4 s 4 , , S 2 k 1 > s 2 k 1 , S 2 k s 2 k , N ( t ) = n } = i = 1 k ( λ 2 ( s 2 i s 2 i 1 ) 2 2 e λ ( s 2 i s 2 i 1 ) ) i = 1 k e λ ( s 2 i 1 s 2 i 2 ) . e λ ( t s 2 k ) = i = 1 k [ λ 2 ( s 2 i s 2 i 1 ) 2 2 ] e λ t \begin{aligned} &G(s_1,\cdots,s_n)\\ =&P\{S_1>s_1,S_2\le s_2,S_3>s_3,S_4\le s_4,\cdots,S_{2k-1}>s_{2k-1},S_{2k}\le s_{2k},N(t)=n\}\\ =&\prod_{i=1}^{k}(\frac{\lambda^2(s_{2i}-s_{2i-1})^2}{2}e^{-\lambda(s_{2i}-s_{2i-1})}) \prod_{i=1}^ke^{-\lambda(s_{2i-1}-s_{2i-2})}.e^{-\lambda(t-s_{2k})}\\ =&\prod_{i=1}^k[\frac{\lambda^2(s_{2i}-s_{2i-1})^2}{2}]e^{-\lambda t} \end{aligned} 其對 s 1 , , s 2 k s_1,\cdots,s_{2k} 依次求偏導,獲得 2 k s 1 s 2 k G = ( 1 ) k λ 2 k e λ t \frac{\partial^{2k}}{\partial s_1\cdots\partial s_{2k}}G=(-1)^k\lambda^{2k}e^{-\lambda t} 相似於非條件分佈的討論,令 F ( s 1 , , s n ) = P { S 1 s 1 , , S n s n , N ( t ) = n } F(s_1,\cdots,s_n)=P\{S_1\le s_1,\cdots,S_n\le s_n,N(t)=n\} ,就有 2 k s 1 s 2 k F = λ 2 k e λ t \frac{\partial^{2k}}{\partial s_1\cdots\partial s_{2k}}F=\lambda^{2k}e^{-\lambda t} 因而,在給定 N ( t ) = n N(t)=n 條件下,條件密度爲 p ( s 1 , , s n ) = λ 2 k e λ t ( λ t ) 2 k ( 2 k ) ! e λ t = ( 2 k ) ! t 2 k = n ! t n I 0 < s 1 < < s n < t p(s_1,\cdots,s_n)=\frac{\lambda^{2k}e^{-\lambda t}}{\frac{(\lambda t)^{2k}}{(2k)!}e^{-\lambda t}}=\frac{(2k)!}{t^{2k}}=\frac{n!}{t^n}I_{0<s_1<\cdots<s_n<t} n n 爲奇數時討論也相似,獲得的條件密度函數也是上式。實際上,這也是來自均勻分佈 U ( 0 , t ) U(0,t) 的樣本 U 1 , , U n U_1,\cdots,U_n 的順序統計量 U ( 1 ) , , U ( n ) U_{(1)},\cdots,U_{(n)} 的聯合分佈。也就是說,在給定 N ( t ) = n N(t)=n 的條件下,這 n n 個事件發生的時間點在 ( 0 , t ] (0,t] 內均勻分佈,再進行一個排列就獲得 S 1 , , S n S_1,\cdots,S_n

結論 S 1 , S 2

相關文章
相關標籤/搜索