找了一番,Spark讀寫HBase已經有專門的 Maven 依賴包可用,HBase提供了一個HBase Spark Connector項目,hbase官網文檔提到這個項目可從源碼編譯。這樣就有相似spark-kafka,spark-hive的hbase-spark依賴了。mvn庫如今提供了一個1.0版本https://mvnrepository.com/artifact/org.apache.hbase.connectors.spark/hbase-spark/1.0.0,其Spark爲2.4.0,Scala爲2.11.12,其餘版本須要自行編譯。java
官網1.0jar maven依賴:git
<!-- https://mvnrepository.com/artifact/org.apache.hbase.connectors.spark/hbase-spark -->
<dependency>
<groupId>org.apache.hbase.connectors.spark</groupId>
<artifactId>hbase-spark</artifactId>
<version>1.0.0</version>
</dependency>
複製代碼
很是容易和這個項目混淆:https://mvnrepository.com/artifact/org.apache.hbase/hbase-spark,這個不是HBase Connector Spark項目! github
Apache Hbase維護的項目,今後處下載源碼壓縮包: Hbase Connectors-Spark源碼sql
To generate an artifact for a different spark version and/or scala version, pass command-line options as follows (changing version numbers appropriately):shell
$ mvn -Dspark.version=2.3.1 -Dscala.version=2.11.8 -Dscala.binary.version=2.11 clean install
複製代碼
準備編譯出Spark2.3.1&Scala2.11.8的hbase-spark依賴:apache
unzip hbase-connectors-master.zip
cd hbase-connectors-master/
mvn -Dspark.version=2.3.1 -Dscala.version=2.11.8 -Dscala.binary.version=2.11 clean install
複製代碼
mvn -Dspark.version=2.3.1 -Dscala.version=2.11.8 -Dscala.binary.version=2.11 -DskipTests clean install bash
位置:~/hbase-connectors-master/spark/hbase-spark/target app
import org.apache.hadoop.hbase.client.Put
import org.apache.hadoop.hbase.{HBaseConfiguration, TableName}
//從編譯的hbase-spark-1.0.1-SNAPSHOT.jar中引入
import org.apache.hadoop.hbase.spark.HBaseContext
import org.apache.hadoop.hbase.util.Bytes
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.SparkSession
import java.util.UUID
/** * 引入了從Hbase官網編譯的hbase-spark jar,調用HBaseContext * Spark批量寫數據到HBase */
object SparkWithHBase {
def main(args: Array[String]): Unit = {
//Spark統一入口
val spark = SparkSession.builder()
.appName("Spark JDBC Test")
.master("local")
.getOrCreate()
//列族名稱
val SRC_FAMILYCOLUMN = "info"
//Hbase配置
val config = HBaseConfiguration.create()
config.set("hbase.zookeeper.quorum", "manager.bigdata")
config.set("hbase.zookeeper.property.clientPort", "2181")
//Hbase上下文,是API的核心
val hbaseContext = new HBaseContext(spark.sparkContext, config)
//讀取數據源,封裝成<RowKey,Values>這種格式
val rdd: RDD[(String, Array[(String, String)])] = spark.read.csv("hdfs://manager.bigdata:8020/traffic.txt")
.rdd
.map(r => {
(UUID.randomUUID().toString, Array((r.getString(0), "c1"), (r.getString(1), "c2"), (r.getString(2), "c3")))
})
//使用批量put方法寫入數據
hbaseContext.bulkPut[(String, Array[(String, String)])](rdd,
TableName.valueOf("spark_hbase_bulk_put"),
row => {
val put = new Put(Bytes.toBytes(row._1))
row._2.foreach(putValue => put.addColumn(
Bytes.toBytes(SRC_FAMILYCOLUMN),
Bytes.toBytes(putValue._2),
Bytes.toBytes(putValue._1)))
put
})
}
}
複製代碼
經查詢,數據成功寫入HBase。dom